搜索

x
中国物理学会期刊

矩阵形式的不变本征算符方法以及几种介观电路的本征频率

CSTR: 32037.14.aps.68.20190651

The invariant eigen-operator method in matrix form and the eigenfrequency of several mesoscopic circuits

CSTR: 32037.14.aps.68.20190651
PDF
HTML
导出引用
  • 本文把不变本征算符方法(invariant eigen-operator, IEO方法)推广到了基于拉格朗日量的矩阵形式, 将以往计算的思路和过程用简约的矩阵形式表示出来, 这对大规模复杂多回路的介观电路的计算有着重要的意义. 此外用该方法计算了三个LC介观电路的本征频率, 包括存在互感和不存在互感的两种情形. 通过计算结果得出了这些电路的相关性质, 说明了本征频率只与介观电路本身的元件性质有关.

     

    The Invariant Eigen-operator (IEO) method is widely used in solving the eigenfrequencies of the coulped quantum mesoscopic circuits. The previous IEO method is complicated but stylized, we always wasted much time in this boring processes. Here we extended the IEO method to the matrix form based on Lagrangian of the complex mesoscopic circuits, and express the ideas and processes of the previous calculations of the IEO method in a very simple matrix form. The mathematical methods we used is the indicator representation of the matrix, and we got a very simple and convenient matrix form of the IEO method. This form has important significance for the calculation of large-scale complex multi-loop mesoscopic circuits. Moreover, the matrix form of the IEO method is very friendly to the programming implementation of the complex quantum mesoscopic LC circuits, it is probably a most optimal algorithm for calculating the eigenfrequencies of the quantum mesoscopic LC circuits. In addition, with some help of computer programs, we used this method to calculate the eigenfrequencies of three LC mesoscopic circuits, including two cases with and without mutual inductance. We revealed some relevant properties of these circuits by calculating results, indicating that the eigenfrequency is only related to the element properties of the mesoscopic circuit itself. Finally, we found that this method can also be used in other areas like atom-light coupling systems and solid state physics.

     

    目录

    /

    返回文章
    返回