搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分子层次的金纳米棒-表面活性剂-磷脂自组装复合体形貌

杨颖 宋俊杰 万明威 高靓辉 方维海

引用本文:
Citation:

分子层次的金纳米棒-表面活性剂-磷脂自组装复合体形貌

杨颖, 宋俊杰, 万明威, 高靓辉, 方维海

Morphologies of self-assembled gold nanorod-surfactant-lipid complexes at molecular level

Yang Ying, Song Jun-Jie, Wan Ming-Wei, Gao Liang-Hui, Fang Wei-Hai
PDF
HTML
导出引用
  • 金纳米粒子表面修饰剂的组分和形貌影响其物理化学性质. 本文采用隐式溶剂耗散粒子动力学模拟的方法, 研究了金纳米棒、溴化十六烷基三甲基铵和二肉豆蔻酰磷脂酰胆碱的自组装形貌. 结果表明, 复合体组装形貌主要与溴化十六烷基三甲基铵和二肉豆蔻酰磷脂酰胆碱这两种修饰剂的摩尔比有关, 而金纳米棒与修饰剂的相互作用强度以及金纳米棒的直径对形貌的影响不明显. 当作用强度和直径一定时, 随着摩尔比增加, 修饰剂在金纳米棒表面会形成完整的双层膜、有裂痕的双层膜、长片状胶束、以及以螺旋形式缠绕在金纳米棒上的蠕虫状胶束. 进一步分析发现, 金纳米棒直径越小、摩尔比越大、或作用强度越大时, 金纳米棒两端的覆盖程度越高, 同时修饰剂吸附层的厚度越薄. 这些结果直接表征了溴化十六烷基三甲基铵和二肉豆蔻酰磷脂酰胆碱混合物在金纳米棒表面的形态, 在分子水平上加深了对金纳米棒自组装行为的理解, 有助于实现金纳米棒的可控自组装.
    Gold nanorods (GNRs) have aroused the extensive interest of many researchers in recent years due to their unique physicochemical properties. However, the toxic cetyltrimethylammonium bromide (CTAB) is often introduced into the process of synthesizing GNRs, which hinders the wide-range applications of GNRs in clinical practice. To reduce the toxicity, the CTAB molecules coated on the surface of GNRs should be replaced by nontoxic and biocompatible agents such as phospholipid. Thus the component and morphology of the mixed coating agents on the surface of GNRs affect the physicochemical properties of GNRs. To study the morphology and properties of the coated GNRs at a molecular level, we investigate the self-assembly of GNRs, CTAB, and dimyristoyl phosphatidylcholine (DMPC) by using solvent-free dissipative particle dynamics simulations. Our results show that the morphology of the assembled complex mainly depends on the CTAB/DMPC molar ratio, while neither of the interaction strength between GNRs and the coating agents nor the diameter of GNRs has significant effect on the morphology. At a certain combination of GNRs-coating agent interaction strength with GNRs diameter, the mixture of CTAB and DMPC on the surface of GNRs undergoes a gradual change in morphology as the CTAB/DMPC molar ratio increases, including the forming of intact bilayer membrane, cracked bilayer membrane, long patches of micelles, and short wormlike micelles winding GNRs in spiral shape. The morphology of intact bilayer membrane verifies the experimental guess, while the other three morphologies are brand-new discoveries. We also find that when the GNR’s diameter becomes smaller, or the CTAB/DMPC molar ratio is larger, or the interaction strength is greater, the agents cap the ends of GNRs, meanwhile the membrane thickness becomes thinner. The multiple morphologies of the assembled complexes can be qualitatively explained by the shape energy of a membrane adsorbed on a solid surface. When the surface tension of the membrane (which is proportional to the spontaneous curvature of the membrane) exceeds a critical value (which is equal to the adhesion energy density of the membrane), the membrane dissociates from the solid surface and its shape changes. The change trend is related to the spontaneous curvature of the free membrane. As a result of the synergy and competition among the inherent curvatures of GNRs, the spontaneous curvature of CTAB/DMPC membrane or micelle, as well as the adhesion energy, various interesting morphologies are produced. Our simulations and analyses directly characterize the morphological structures of CTAB and lipid coated GNRs, which allow us to in depth understand the self-assembling behaviors of GNRs at a molecular level. This is also conductive to achieving the controlled assemblies of GNRs.
      通信作者: 万明威, wmwbnu@foxmail.com ; 高靓辉, lhgao@bnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 21673021, 21421003)资助的课题
      Corresponding author: Wan Ming-Wei, wmwbnu@foxmail.com ; Gao Liang-Hui, lhgao@bnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 21673021, 21421003)
    [1]

    Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D'Alessio M, Zambonin P G, Traversa E 2005 Chem. Mater. 17 5255Google Scholar

    [2]

    Jin R C, Cao Y W, Mirkin C A, Kelly K L, Schatz G C, Zheng J G 2001 Science 294 1901Google Scholar

    [3]

    Levard C, Hotze E M, Lowry G V, Jr Brown G E 2012 Environ. Sci. Technol. 46 6900Google Scholar

    [4]

    Elahi N, Kamali M, Baghersad M H 2018 Talanta 184 537Google Scholar

    [5]

    黄运欢, 李璞 2015 物理学报 64 207301Google Scholar

    Huang Y H, Li P 2015 Acta Phys. Sin. 64 207301Google Scholar

    [6]

    柯善林 阚彩侠 莫博 从博 朱杰君 2012 物理化学学报 28 1275Google Scholar

    Ke S L, Kan C X, Mo B, Cong B, Zhu J J 2012 Acta Phys.-Chim. Sin. 28 1275Google Scholar

    [7]

    Singh N, Charan S, Sanjiv K, Huang S H, Hsiao Y C, Kuo C W, Chien F C, Lee T C, Chen P 2012 Bioconjugate Chem. 23 421Google Scholar

    [8]

    von Maltzahn G, Centrone A, Park J H, Ramanathan R, Sailor M J, Hatton T A, Bhatia S N 2009 Adv. Mater. 21 3175Google Scholar

    [9]

    Zhang Y, Qian J, Wang D, Wang Y, He S 2013 Angew. Chem. Int. Ed. 52 1148Google Scholar

    [10]

    Cao J, Galbraith E K, Sun T, Grattan K T V 2012 Sens. Actuators, B 169 360Google Scholar

    [11]

    Li X, Qian J, He S 2008 Nanotechnology 19 355501Google Scholar

    [12]

    Mayer K M, Hafner J H 2011 Chem. Rev. 111 3828Google Scholar

    [13]

    Joshi P P, Yoon S J, Hardin W G, Emelianov S, Sokolov K V 2013 Bioconjugate Chem. 24 878Google Scholar

    [14]

    Luo T, Huang P, Gao G, Shen G X, Fu S, Cui D X, Zhou C Q, Ren Q S 2011 Opt. Express 19 17030Google Scholar

    [15]

    Zhang J B, Balla N K, Gao C, Sheppard C J R, Yung L Y L, Rehman S, Teo J Y, Kulkarni S R, Fu Y H, Yin S J 2012 Aust. J. Chem. 65 290Google Scholar

    [16]

    Troiber C, Kasper J C, Milani S, Scheible M, Martin I, Schaubhut F, Kuchler S, Radler J, Simmel F C, Friess W, Wagner E 2013 Eur. J. Pharmacol. 84 255Google Scholar

    [17]

    Xue H Y, Wong H L 2011 ACS Nano 5 7034Google Scholar

    [18]

    Martin C R 1994 Science 266 1961Google Scholar

    [19]

    Raj M A, John S A 2014 Electrochem. Commun. 45 27Google Scholar

    [20]

    Abdelrasoul G N, Cingolani R, Diaspro A, Athanassiou A, Pignatelli F 2014 J. Photochem. Photobiol., A 275 7Google Scholar

    [21]

    Johnson C J, Dujardin E, Davis S A, Murphy C J, Mann S 2002 J. Mater. Chem. 12 1765Google Scholar

    [22]

    Takahashi H, Niidome Y, Niidome T, Kaneko K, Kawasaki H, Yamada S 2006 Langmuir 22 2Google Scholar

    [23]

    Lyubartsev A P, Rabinovich A L 2011 Soft Matter 7 25Google Scholar

    [24]

    Orendorff C J, Alam T M, Sasaki D Y, Bunker B C, Voigt J A 2009 ACS Nano 3 971Google Scholar

    [25]

    Galati E, Tebbe M, Querejeta-Fernandez A, Xin H L, Gang O, Zhulina E B, Kumacheva E 2017 ACS Nano 11 4995Google Scholar

    [26]

    Galati E, Tao H, Tebbe M, Ansari R, Rubinstein M, Zhulina E B, Kumacheva E 2019 Angew. Chem. Int. Ed. 58 3123Google Scholar

    [27]

    Tao H, Chen L, Galati E, Manion J G, Seferos D S, Zhulina E B, Kumacheva E 2019 Langmuir 35 15872Google Scholar

    [28]

    Wang R Y, Wang H, Wu X, Ji Y, Wang P, Qu Y, Chung T S 2011 Soft Matter 7 8370Google Scholar

    [29]

    Matthews J R, Payne C M, Hafner J H 2015 Langmuir 31 9893Google Scholar

    [30]

    Nakashima H, Furukawa K, Kashimura Y, Torimitsu K 2008 Langmuir 24 5654Google Scholar

    [31]

    Yang J A, Murphy C J 2012 Langmuir 28 5404Google Scholar

    [32]

    Sreeprasad T S, Pradeep T 2011 Langmuir 27 3381Google Scholar

    [33]

    闫昭, 赵文静, 王荣瑶 2016 物理学报 65 126101Google Scholar

    Yan Z, ZhaoW J, Wang R Y 2016 Acta Phys. Sin. 65 126101Google Scholar

    [34]

    Zhu Y, Qu C, Kuang H, Xu L, Liu L, Hua Y, Wang L, Xu C 2011 Biosens. Bioelectron. 26 4387Google Scholar

    [35]

    Wang Y T, Dellago C 2003 J. Phys. Chem. B 107 9214Google Scholar

    [36]

    da Silva J, Dias R, da Hora G, Soares T, Meneghetti M 2018 J. Braz. Chem. Soc. 29 191Google Scholar

    [37]

    Schmid N, Eichenberger A P, Choutko A, Riniker S, Winger M, Mark A E, van Gunsteren W F 2011 Eur. Biophys. J. 40 843Google Scholar

    [38]

    da Silva J A, Meneghetti M R 2018 Langmuir 34 366Google Scholar

    [39]

    da Silva J A, Netz P A, Meneghetti M R 2020 Langmuir 36 257Google Scholar

    [40]

    Oroskar P A, Jameson C J, Murad S 2016 Mol. Phys. 115 1122Google Scholar

    [41]

    Horsch M A, Zhang Z, Glotzer S C 2005 Phys. Rev. Lett. 95 056105Google Scholar

    [42]

    Wan M W, Li X X, Gao L H, Fang W H 2016 Nanotechnology 27 465704Google Scholar

    [43]

    Li X X, Gao L H, Fang W H 2016 PLoS One 11 e0154568Google Scholar

    [44]

    Sevink G J A, Charlaganov M, Fraaije J G E M 2013 Soft Matter 9 2816Google Scholar

    [45]

    Sevink G J A, Fraaije J 2014 Soft Matter 10 5129Google Scholar

    [46]

    Wan M W, Gao L H, Fang W H 2018 PLoS One 13 e0198049Google Scholar

    [47]

    Groot R D 2003 J. Chem. Phys. 118 11265Google Scholar

    [48]

    Marrink S J, Risselada H J, Yefimov S, Tieleman D P, de Vries A H 2007 J. Phys. Chem. B 111 7812Google Scholar

    [49]

    Humphrey W, Dalke A, Schulten K 1996 J. Mol. Graphics 14 33Google Scholar

    [50]

    Illa-Tuset S, Malaspina D C, Faraudo J 2018 Phys. Chem. Chem. Phys. 20 26422Google Scholar

    [51]

    Lipowsky R 2013 Faraday Discuss. 161 305Google Scholar

    [52]

    Arnarez C, Uusitalo J J, Masman M F, Ingolfsson H I, de Jong D H, Melo M N, Periole X, de Vries A H, Marrink S J 2015 J. Chem. Theory. Comput. 11 260Google Scholar

  • 图 1  粗粒化模型 (a) GNRs; (b) CTAB; (c) DMPC

    Fig. 1.  Coarse-grained model of (a) GNRs, (b) CTAB, and (c) DMPC

    图 2  CTAB和DMPC混合物的形貌图(CTAB的头部H和尾巴T珠子分别用蓝色和黄色表示, 而DMPC的H和M/T珠子分别用红色和绿色表示)

    Fig. 2.  Morphology of a mixture of CTAB and DMPC. The H and T beads of CTAB are colored in blue and yellow, while the H and M/T beads of DMPC are in red and green, respectively.

    图 3  GNRs-CTAB-DMPC复合体在d = 4 nm, D = 4kBT时的组装形貌, 其中CTAB/DMPC摩尔比分别为(a) 1∶1, (b) 3∶2, (c) 4∶1, (d) 8∶1, (e) 16∶1, (f) 1∶0

    Fig. 3.  Morphology of assembled GNRs-CTAB-DMPC complex with d = 4 nm and D = 4kBT. The CTAB/DMPC molar ratio is (a) 1∶1, (b) 3∶2, (c) 4∶1, (d) 8∶1, (e) 16∶1, (f) 1∶0, respectively.

    图 D1  d = 4 nm和D = 4 kBT时GNRs表面修饰剂的投影展开分布图, 其中摩尔比分别为(a) 1∶1, (b) 3∶2, (c) 4∶1, (d) 8∶1, (e) 16∶1, (f) 1∶0

    Fig. D1.  Projected expansion map of coating agents distributing on the surface of GNRs. Data is obtained at d = 4 nm and D = 4 kBT. The CTAB/DMPC molar ratio is (a) 1∶1, (b) 3∶2, (c) 4∶1, (d) 8∶1, (e) 16∶1, (f) 1∶0.

    图 4  (a) 当金纳米棒直径d = 4 nm时, GNRs-CTAB-DMPC复合体在不同CTAB/DMPC摩尔比及D下的组装形貌; (b) 当Morse势参数D = 4kBT时, GNRs-CTAB-DMPC复合体在不同CTAB/DMPC摩尔比及d下的组装形貌

    Fig. 4.  (a) Morphology of assembled GNRs-CTAB-DMPC complex at various CTAB/DMPC molar ratio and D with given GNR diameter d = 4 nm; (b) morphology of assembled GNRs-CTAB-DMPC complex at various CTAB/DMPC molar ratio and d with given Morse potential parameter D = 4kBT.

    图 5  (a) CTAB和(b) DMPC的$ \alpha $角的定义示意图

    Fig. 5.  Schematic diagram of definition of $ \alpha $ for (a) CTAB and (b) DMPC.

    图 6  (a) 修饰剂的蠕虫系数FwormD的关系图; (b) Fwormd的关系图; (c) GNRs的覆盖率FcapD的关系图; (d) Fcapd的关系图; 不同颜色的直线代表不同的摩尔比

    Fig. 6.  (a) Worming coefficient Fworm of coating agents as a function of D; (b) Fworm as a function of d; (c) capping rate Fcap of GNRs as a function of D; (d) Fcap as a function of d. Results are obtained at various CTAB/DMPC molar ratios, shown in different colors.

    图 7  CTAB与DMPC的H1珠子和金珠子在不同D及CTAB/DMPC摩尔比下的RDF, 其中摩尔比分别为(a) 1∶1, (b) 3∶2, (c) 4∶1, (d) 8∶1, (e) 16∶1, (f) 1∶0

    Fig. 7.  RDF between H1 bead of CTAB and DMPC and gold bead at various D and CTAB/DMPC molar ratios. The molar ratio is (a) 1∶1, (b) 3∶2, (c) 4∶1, (d) 8∶1, (e) 16∶1, (f) 1∶0, respectively.

    图 8  不同CTAB/DMPC摩尔比下得到的膜厚度LmemD的关系图.

    Fig. 8.  Membrane thickness Lmem as a function of D. Results are obtained at various CTAB/DMPC molar ratios.

    图 9  不同D下得到的GNRs表面修饰剂的投影展开分布图(GNRs直径d = 4 nm), 其中, 线性拟合斜率代表螺旋程度; 左图是CTAB/DMPC摩尔比为16∶1的结果, (a) D = 1kBT, (b) D = 2kBT, (c) D = 3kBT, (d) D = 4kBT; 右图是CTAB/DMPC摩尔比为1∶0的结果, (e) D = 1kBT, (f) D = 2kBT, (g) D = 3kBT, (h) D = 4kBT

    Fig. 9.  Projected expansion map of coating agent distributing on the surface of GNRs with d = 4 nm. The slope of the linear fitting represents the spiral degree. The left panels are results at CTAB/DMPC molar ratio of 16∶1 with (a) D = 1kBT, (b) D = 2kBT, (c) D = 3kBT, (d) D = 4kBT. The right panels are results at CTAB/DMPC molar ratio of 1∶0 with (e) D = 1kBT, (f) D = 2kBT, (g) D = 3kBT, (h) D = 4kBT.

    图 C1  纯DMPC和d = 4 nm, D = 4kBT时GNRs-DMPC的组装形貌 (a) DMPC的形貌及(b)切面图; (c) GNRs-DMPC的形貌及(d)切面图

    Fig. C1.  Morphology of the pure DMPC lipids and assembled GNRs-DMPC complex with d = 4 nm and D = 4kBT: (a) Morpohology and (b) cross-sectional view of DMPC; (c) morpohology and (d) cross-sectional view of GNRs-DMPC

    图 E1  RDF峰的位置示意图, 其中金珠子用黄色表示, CTAB和DMPC的H1珠子用红色表示

    Fig. E1.  Schematic diagram of RDF. The GN bead is shown in yellow, the H1 head beads of CTAB and DMPC were shown in red.

    表 A1  DPD力场中aij参数的取值(ION, H1, H2, M, T珠子分别和文献[43]中的W, Q0, Qa, Na, C珠子一一对应)

    Table A1.  Values of parameters aij in DPD Force field. The ION, H1, H2, M, and T beads correspond to the W, Q0, Qa, Na, and C beads in Ref [43], respectively.

    aijIONH1H2MT
    ION1009898102130
    H198110100102130
    H298100110102130
    M102102102100110
    T130130130110100
    下载: 导出CSV

    表 A2  Im-DPD力场中c, σs参数的值

    Table A2.  Values of c, σ, s in Im-DPD Force field.

    IONH1H2MT
    c019.3719.3720.0224.56
    σ0.53850.5360.5360.5410.566
    s0.6250.6250.6250.71350.7135
    下载: 导出CSV

    表 A3  Im-DPD力场中的键长、键角和对应的力参数(d是以纳米为单位的金纳米棒的直径)

    Table A3.  Equilibrium bonds, angles, and corresponding force constants in Im-DPD Force field. d is the diameter of GNRs in unit of nanometer.

    bondL0/r0K2/kBT·r0–2angleθ0/(º)K3/kBT
    GN—GNd/0.71512GN—GN—GN180600
    H1—T0.47512H2—M—M1206
    H1—H20.47512H2—M—T1806
    H2—M0.47512M—T—T1806
    M—M0.31512T—T—T1806
    M—T0.59512
    T—T0.59512
    下载: 导出CSV

    表 E1  不同D及CTAB/DMPC摩尔比下的r1, r2, r3Lmem

    Table E1.  r1, r2, r3 and Lmem at different combinations of D and CTAB/DMPC molar ratio.

    Molar ratioD = 1kBTD = 2kBTD = 3kBTD = 4kBT
    r2r3Lmemr2r3Lmemr1r2r3Lmemr1r2r3Lmem
    1∶12.886.333.452.726.113.392.625.823.22.242.685.783.1
    3∶22.936.423.492.725.953.232.645.713.072.252.665.632.97
    4∶12.896.13.212.85.752.952.322.735.622.892.292.675.362.69
    8∶12.756.063.312.745.712.972.32.745.522.782.242.705.362.66
    16∶12.876.093.222.715.743.032.232.705.582.882.262.745.462.72
    1∶02.755.893.142.795.602.812.292.675.422.752.292.775.362.59
    下载: 导出CSV

    表 B1  单个CTAB胶束的模拟结果, 其中, D是胶束的直径, e是离心率, α是CTAB分子的电离度(更多细节详见文献[50]), 表格中的前3行数据来自文献[50], 用作对比分析

    Table B1.  Simulations results of the single CTAB micelle. D is the diameter of the micelle, e is the eccentricity, and α is the degree of ionization of CTAB molecules (see Ref. [50] for details). The data in the first three lines are taken from Ref. [50] for comparison.

    Force FieldD/nmeα
    All-atomic4.790.290.63
    Martini4.540.140.78
    Dry Martini4.420.120.73
    Im-DPD5.130.160.68
    下载: 导出CSV
  • [1]

    Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D'Alessio M, Zambonin P G, Traversa E 2005 Chem. Mater. 17 5255Google Scholar

    [2]

    Jin R C, Cao Y W, Mirkin C A, Kelly K L, Schatz G C, Zheng J G 2001 Science 294 1901Google Scholar

    [3]

    Levard C, Hotze E M, Lowry G V, Jr Brown G E 2012 Environ. Sci. Technol. 46 6900Google Scholar

    [4]

    Elahi N, Kamali M, Baghersad M H 2018 Talanta 184 537Google Scholar

    [5]

    黄运欢, 李璞 2015 物理学报 64 207301Google Scholar

    Huang Y H, Li P 2015 Acta Phys. Sin. 64 207301Google Scholar

    [6]

    柯善林 阚彩侠 莫博 从博 朱杰君 2012 物理化学学报 28 1275Google Scholar

    Ke S L, Kan C X, Mo B, Cong B, Zhu J J 2012 Acta Phys.-Chim. Sin. 28 1275Google Scholar

    [7]

    Singh N, Charan S, Sanjiv K, Huang S H, Hsiao Y C, Kuo C W, Chien F C, Lee T C, Chen P 2012 Bioconjugate Chem. 23 421Google Scholar

    [8]

    von Maltzahn G, Centrone A, Park J H, Ramanathan R, Sailor M J, Hatton T A, Bhatia S N 2009 Adv. Mater. 21 3175Google Scholar

    [9]

    Zhang Y, Qian J, Wang D, Wang Y, He S 2013 Angew. Chem. Int. Ed. 52 1148Google Scholar

    [10]

    Cao J, Galbraith E K, Sun T, Grattan K T V 2012 Sens. Actuators, B 169 360Google Scholar

    [11]

    Li X, Qian J, He S 2008 Nanotechnology 19 355501Google Scholar

    [12]

    Mayer K M, Hafner J H 2011 Chem. Rev. 111 3828Google Scholar

    [13]

    Joshi P P, Yoon S J, Hardin W G, Emelianov S, Sokolov K V 2013 Bioconjugate Chem. 24 878Google Scholar

    [14]

    Luo T, Huang P, Gao G, Shen G X, Fu S, Cui D X, Zhou C Q, Ren Q S 2011 Opt. Express 19 17030Google Scholar

    [15]

    Zhang J B, Balla N K, Gao C, Sheppard C J R, Yung L Y L, Rehman S, Teo J Y, Kulkarni S R, Fu Y H, Yin S J 2012 Aust. J. Chem. 65 290Google Scholar

    [16]

    Troiber C, Kasper J C, Milani S, Scheible M, Martin I, Schaubhut F, Kuchler S, Radler J, Simmel F C, Friess W, Wagner E 2013 Eur. J. Pharmacol. 84 255Google Scholar

    [17]

    Xue H Y, Wong H L 2011 ACS Nano 5 7034Google Scholar

    [18]

    Martin C R 1994 Science 266 1961Google Scholar

    [19]

    Raj M A, John S A 2014 Electrochem. Commun. 45 27Google Scholar

    [20]

    Abdelrasoul G N, Cingolani R, Diaspro A, Athanassiou A, Pignatelli F 2014 J. Photochem. Photobiol., A 275 7Google Scholar

    [21]

    Johnson C J, Dujardin E, Davis S A, Murphy C J, Mann S 2002 J. Mater. Chem. 12 1765Google Scholar

    [22]

    Takahashi H, Niidome Y, Niidome T, Kaneko K, Kawasaki H, Yamada S 2006 Langmuir 22 2Google Scholar

    [23]

    Lyubartsev A P, Rabinovich A L 2011 Soft Matter 7 25Google Scholar

    [24]

    Orendorff C J, Alam T M, Sasaki D Y, Bunker B C, Voigt J A 2009 ACS Nano 3 971Google Scholar

    [25]

    Galati E, Tebbe M, Querejeta-Fernandez A, Xin H L, Gang O, Zhulina E B, Kumacheva E 2017 ACS Nano 11 4995Google Scholar

    [26]

    Galati E, Tao H, Tebbe M, Ansari R, Rubinstein M, Zhulina E B, Kumacheva E 2019 Angew. Chem. Int. Ed. 58 3123Google Scholar

    [27]

    Tao H, Chen L, Galati E, Manion J G, Seferos D S, Zhulina E B, Kumacheva E 2019 Langmuir 35 15872Google Scholar

    [28]

    Wang R Y, Wang H, Wu X, Ji Y, Wang P, Qu Y, Chung T S 2011 Soft Matter 7 8370Google Scholar

    [29]

    Matthews J R, Payne C M, Hafner J H 2015 Langmuir 31 9893Google Scholar

    [30]

    Nakashima H, Furukawa K, Kashimura Y, Torimitsu K 2008 Langmuir 24 5654Google Scholar

    [31]

    Yang J A, Murphy C J 2012 Langmuir 28 5404Google Scholar

    [32]

    Sreeprasad T S, Pradeep T 2011 Langmuir 27 3381Google Scholar

    [33]

    闫昭, 赵文静, 王荣瑶 2016 物理学报 65 126101Google Scholar

    Yan Z, ZhaoW J, Wang R Y 2016 Acta Phys. Sin. 65 126101Google Scholar

    [34]

    Zhu Y, Qu C, Kuang H, Xu L, Liu L, Hua Y, Wang L, Xu C 2011 Biosens. Bioelectron. 26 4387Google Scholar

    [35]

    Wang Y T, Dellago C 2003 J. Phys. Chem. B 107 9214Google Scholar

    [36]

    da Silva J, Dias R, da Hora G, Soares T, Meneghetti M 2018 J. Braz. Chem. Soc. 29 191Google Scholar

    [37]

    Schmid N, Eichenberger A P, Choutko A, Riniker S, Winger M, Mark A E, van Gunsteren W F 2011 Eur. Biophys. J. 40 843Google Scholar

    [38]

    da Silva J A, Meneghetti M R 2018 Langmuir 34 366Google Scholar

    [39]

    da Silva J A, Netz P A, Meneghetti M R 2020 Langmuir 36 257Google Scholar

    [40]

    Oroskar P A, Jameson C J, Murad S 2016 Mol. Phys. 115 1122Google Scholar

    [41]

    Horsch M A, Zhang Z, Glotzer S C 2005 Phys. Rev. Lett. 95 056105Google Scholar

    [42]

    Wan M W, Li X X, Gao L H, Fang W H 2016 Nanotechnology 27 465704Google Scholar

    [43]

    Li X X, Gao L H, Fang W H 2016 PLoS One 11 e0154568Google Scholar

    [44]

    Sevink G J A, Charlaganov M, Fraaije J G E M 2013 Soft Matter 9 2816Google Scholar

    [45]

    Sevink G J A, Fraaije J 2014 Soft Matter 10 5129Google Scholar

    [46]

    Wan M W, Gao L H, Fang W H 2018 PLoS One 13 e0198049Google Scholar

    [47]

    Groot R D 2003 J. Chem. Phys. 118 11265Google Scholar

    [48]

    Marrink S J, Risselada H J, Yefimov S, Tieleman D P, de Vries A H 2007 J. Phys. Chem. B 111 7812Google Scholar

    [49]

    Humphrey W, Dalke A, Schulten K 1996 J. Mol. Graphics 14 33Google Scholar

    [50]

    Illa-Tuset S, Malaspina D C, Faraudo J 2018 Phys. Chem. Chem. Phys. 20 26422Google Scholar

    [51]

    Lipowsky R 2013 Faraday Discuss. 161 305Google Scholar

    [52]

    Arnarez C, Uusitalo J J, Masman M F, Ingolfsson H I, de Jong D H, Melo M N, Periole X, de Vries A H, Marrink S J 2015 J. Chem. Theory. Comput. 11 260Google Scholar

  • [1] 唐修行, 陈泓樾, 王婧婧, 王志军, 臧渡洋. 表面活性剂液滴过渡沸腾的Marangoni效应与二次液滴形成. 物理学报, 2023, 72(19): 196801. doi: 10.7498/aps.72.20230919
    [2] 张旋, 张天赐, 葛际江, 蒋平, 张贵才. 表面活性剂对气-液界面纳米颗粒吸附规律的影响. 物理学报, 2020, 69(2): 026801. doi: 10.7498/aps.69.20190756
    [3] 林晨森, 陈硕, 肖兰兰. 适用复杂几何壁面的耗散粒子动力学边界条件. 物理学报, 2019, 68(14): 140204. doi: 10.7498/aps.68.20190533
    [4] 许少锋, 楼应侯, 吴尧锋, 王向垟, 何平. 微通道疏水表面滑移的耗散粒子动力学研究. 物理学报, 2019, 68(10): 104701. doi: 10.7498/aps.68.20182002
    [5] 闫昭, 赵文静, 王荣瑶. 基于Logistic函数模型的纳米自组装动力学分析. 物理学报, 2016, 65(12): 126101. doi: 10.7498/aps.65.126101
    [6] 王宇翔, 陈硕. 微粗糙结构表面液滴浸润特性的多体耗散粒子动力学研究. 物理学报, 2015, 64(5): 054701. doi: 10.7498/aps.64.054701
    [7] 林晨森, 陈硕, 李启良, 杨志刚. 耗散粒子动力学GPU并行计算研究. 物理学报, 2014, 63(10): 104702. doi: 10.7498/aps.63.104702
    [8] 苏锦芳, 宋海洋, 安敏荣. 金纳米管力学性能的分子动力学模拟. 物理学报, 2013, 62(6): 063103. doi: 10.7498/aps.62.063103
    [9] 李春曦, 裴建军, 叶学民. 倾斜粗糙壁面上含不溶性活性剂溶液的动力学特性. 物理学报, 2013, 62(21): 214704. doi: 10.7498/aps.62.214704
    [10] 刘汉涛, 刘谋斌, 常建忠, 苏铁熊. 介观尺度通道内多相流动的耗散粒子动力学模拟. 物理学报, 2013, 62(6): 064705. doi: 10.7498/aps.62.064705
    [11] 许少锋, 汪久根. 微通道中高分子溶液Poiseuille流的耗散粒子动力学模拟. 物理学报, 2013, 62(12): 124701. doi: 10.7498/aps.62.124701
    [12] 叶通, 高云, 尹彦. 利用聚碳酸酯模板制备的金纳米棒的表面增强Raman散射效应研究. 物理学报, 2013, 62(12): 127801. doi: 10.7498/aps.62.127801
    [13] 邹志宇, 刘晓芳, 曾敏, 杨白, 于荣海, 姜鹤, 唐瑞鹤, 吴章奔. 电场辅助溶解法实现玻璃表面金纳米粒子的形貌控制. 物理学报, 2012, 61(10): 104208. doi: 10.7498/aps.61.104208
    [14] 常建忠, 刘汉涛, 刘谋斌, 苏铁熊. 介观尺度流体绕流球体的耗散粒子动力学模拟. 物理学报, 2012, 61(6): 064704. doi: 10.7498/aps.61.064704
    [15] 刘谋斌, 常建忠. 耗散粒子动力学处理复杂固体壁面的一种有效方法. 物理学报, 2010, 59(11): 7556-7563. doi: 10.7498/aps.59.7556
    [16] 王晓亮, 陈硕. 液气共存的耗散粒子动力学模拟. 物理学报, 2010, 59(10): 6778-6785. doi: 10.7498/aps.59.6778
    [17] 林涛, 万能, 韩敏, 徐骏, 陈坤基. SnO2纳米晶体的制备、结构与发光性质. 物理学报, 2009, 58(8): 5821-5825. doi: 10.7498/aps.58.5821
    [18] 张 斌, 刘言军, 徐克璹. 全息聚合物弥散液晶器件电光特性的研究. 物理学报, 2004, 53(6): 1850-1855. doi: 10.7498/aps.53.1850
    [19] 吴恒安, 倪向贵, 王宇, 王秀喜. 金属纳米棒弯曲力学行为的分子动力学模拟. 物理学报, 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
    [20] 侯士敏, 陶成钢, 刘虹雯, 赵兴钰, 刘惟敏, 薛增泉. 高定向石墨表面金纳米粒子和金纳米线的研究. 物理学报, 2001, 50(2): 223-226. doi: 10.7498/aps.50.223
计量
  • 文章访问数:  6067
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-25
  • 修回日期:  2020-08-17
  • 上网日期:  2020-12-08
  • 刊出日期:  2020-12-20

/

返回文章
返回