Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study on the structure of water chain encapsulated in carbon nanotube by density functional theory

Wang Li-Na Wen He-Jing Guan Li Wang Hai-Long Fan Bing-Bing Zhang Rui

Study on the structure of water chain encapsulated in carbon nanotube by density functional theory

Wang Li-Na, Wen He-Jing, Guan Li, Wang Hai-Long, Fan Bing-Bing, Zhang Rui
PDF
Get Citation
  • The structure of water molecules encapsulated in single-walled carbon nanotubes (SWCNTs) was studied using a self-consistent charge density functional tight binding method with dispersion correction. The most interesting and important feature observed is the diameter shrinkage of SWCNTs when water chains are confined inside them. The diameter shrinking of SWCNTs may be due to the van der Waals and H-π interaction between water chains and SWCNTs. The binding energy decreases with the increase of the nanotube radius. But when the radius is increased to 6.78 ?, the binding energy is a little increased, and the water chain has changed as a "book-like" structure, which suggests that the weak hydrogen bonding in the isolated water chains is larger than the interaction between water chains and the SWCNTs.
    • Funds:
    [1]

    Iijima S 1991 Nature 354 56

    [2]

    Liew K M, Wong C H, He X Q, Tan M J, Meguid S A 2004 Phys. Rev. B 69 115429

    [3]

    Huang J Y, Chen S, Wang Z Q, Kempa K, Wang Y M, Jo S H, Chen G, Dresselhaus M S, Ren Z F 2006 Nature 439 281

    [4]

    Huang B, Xia Y, Zhao M, Li F, Liu X, Ji Y, Song C 2005 J.Chem. Phys. 122 084708

    [5]

    Tsang S C, Chen Y K, Harris P J F, Green M L H 1994 Nature 372 159

    [6]

    Zhang X Q, Li H, Liew K M 2007 J. Appl. Phys. 102 073709

    [7]

    Zhang K W, Meng L J, Li J, Liu W L, Tang Y, Zhong X J 2008 Acta Phys. Sin. 57 4347 (in Chinese) [张凯旺、孟利军、李 俊、刘文亮、唐 翌、钟建新 2008 物理学报 57 4347]

    [8]

    Li H, Zhang X Q, Sun F W, Li Y F, Liew K M, He X Q 2007 J. Appl. Phys. 102 013702

    [9]

    Ajayan P M, Stephan O, Redlich P, Colliex C 1995 Nature 375 564

    [10]

    Hummer G, Rasaiah J C, Noworyta J P 2001 Nature 414 188

    [11]

    Levinger N E 2002 Science 298 1722

    [12]

    Werder T, Walther J H, Jaffe R L, Halicioglu T, Koumoutsakos P 2003 J. Phys. Chem. B 107 1345

    [13]

    Werder T, Walther J H, Jaffe R L, Halicioglu T, Koumoutsakos P 2008 J. Phys. Chem. B 112 14090

    [14]

    Chen G D, Wang L D, An B, Yang M, Cao D C, Liu G Q 2009 Acta Phys. Sin. 58 1190 (in Chinese) [陈国栋、王六定、安 博、杨 敏、曹得财、刘光清 2009 物理学报 58 1190]

    [15]

    Mann D J, Halls M D 2003 Phys. Rev. Lett. 90 195503

    [16]

    Li H, Zhang X Q, Liew K M 2008 J. Chem. Phys. 128 034707

    [17]

    Rossi M P, Ye H, Gogotsi Y, Babu S, Ndungu P, Bradley J C 2004 Nano Letters 4 989

    [18]

    Guo D Z, Zhang G M, Zhang Z X, Xue Z Q, Gu Z N 2006 J. Phys. Chem. B 110 1571

    [19]

    Zhao Y, Song L, Deng K, Liu Z, Zhang Z, Yang Y, Wang C, Yang H, Jin A, Luo Q, Gu C, Xie S, Sun L 2008 Adv. Mater. 20 1772

    [20]

    Yuan Q, Zhao Y P 2009 J. Am. Chem. Soc. 131 6374

    [21]

    Agrawal B K, Singh V, Pathak A, Srivastava R 2007 Phys. Rev. B (Condensed Matter and Materials Physics) 75 195421

    [22]

    Yuan Q, Zhao Y P 2009 Biomicrofluidics 3 022411

    [23]

    Joseph J. W. McDouall K P a M A R 1988 Chem. Phys. Lett. 148 7

    [24]

    Liu T, Huang M B 2007 Mol. Phys.: An International Journal at the Interface Between Chemistry and Physics 105 2279

    [25]

    Hourahine B, Frauenheim T 2007 J. Phys. Chem. A 111 5678

    [26]

    Feng C, Zhang R Q, Dong S L, Niehaus T A, Frauenheim T 2007 J. Phys. Chem. C 111 14131

    [27]

    Lin C S, Zhang R Q, Lee S T, Elstner M, Frauenheim T, Wan L J 2005 J. Phys. Chem. B 109 14183

    [28]

    Elstner M, Hobza P, Frauenheim T, Suhai S, Kaxiras E 2001 J. Chem. Phys. 114 5149

    [29]

    Koga K, Gao G T, Tanaka H, Zeng X C 2001 Nature 412 802

  • [1]

    Iijima S 1991 Nature 354 56

    [2]

    Liew K M, Wong C H, He X Q, Tan M J, Meguid S A 2004 Phys. Rev. B 69 115429

    [3]

    Huang J Y, Chen S, Wang Z Q, Kempa K, Wang Y M, Jo S H, Chen G, Dresselhaus M S, Ren Z F 2006 Nature 439 281

    [4]

    Huang B, Xia Y, Zhao M, Li F, Liu X, Ji Y, Song C 2005 J.Chem. Phys. 122 084708

    [5]

    Tsang S C, Chen Y K, Harris P J F, Green M L H 1994 Nature 372 159

    [6]

    Zhang X Q, Li H, Liew K M 2007 J. Appl. Phys. 102 073709

    [7]

    Zhang K W, Meng L J, Li J, Liu W L, Tang Y, Zhong X J 2008 Acta Phys. Sin. 57 4347 (in Chinese) [张凯旺、孟利军、李 俊、刘文亮、唐 翌、钟建新 2008 物理学报 57 4347]

    [8]

    Li H, Zhang X Q, Sun F W, Li Y F, Liew K M, He X Q 2007 J. Appl. Phys. 102 013702

    [9]

    Ajayan P M, Stephan O, Redlich P, Colliex C 1995 Nature 375 564

    [10]

    Hummer G, Rasaiah J C, Noworyta J P 2001 Nature 414 188

    [11]

    Levinger N E 2002 Science 298 1722

    [12]

    Werder T, Walther J H, Jaffe R L, Halicioglu T, Koumoutsakos P 2003 J. Phys. Chem. B 107 1345

    [13]

    Werder T, Walther J H, Jaffe R L, Halicioglu T, Koumoutsakos P 2008 J. Phys. Chem. B 112 14090

    [14]

    Chen G D, Wang L D, An B, Yang M, Cao D C, Liu G Q 2009 Acta Phys. Sin. 58 1190 (in Chinese) [陈国栋、王六定、安 博、杨 敏、曹得财、刘光清 2009 物理学报 58 1190]

    [15]

    Mann D J, Halls M D 2003 Phys. Rev. Lett. 90 195503

    [16]

    Li H, Zhang X Q, Liew K M 2008 J. Chem. Phys. 128 034707

    [17]

    Rossi M P, Ye H, Gogotsi Y, Babu S, Ndungu P, Bradley J C 2004 Nano Letters 4 989

    [18]

    Guo D Z, Zhang G M, Zhang Z X, Xue Z Q, Gu Z N 2006 J. Phys. Chem. B 110 1571

    [19]

    Zhao Y, Song L, Deng K, Liu Z, Zhang Z, Yang Y, Wang C, Yang H, Jin A, Luo Q, Gu C, Xie S, Sun L 2008 Adv. Mater. 20 1772

    [20]

    Yuan Q, Zhao Y P 2009 J. Am. Chem. Soc. 131 6374

    [21]

    Agrawal B K, Singh V, Pathak A, Srivastava R 2007 Phys. Rev. B (Condensed Matter and Materials Physics) 75 195421

    [22]

    Yuan Q, Zhao Y P 2009 Biomicrofluidics 3 022411

    [23]

    Joseph J. W. McDouall K P a M A R 1988 Chem. Phys. Lett. 148 7

    [24]

    Liu T, Huang M B 2007 Mol. Phys.: An International Journal at the Interface Between Chemistry and Physics 105 2279

    [25]

    Hourahine B, Frauenheim T 2007 J. Phys. Chem. A 111 5678

    [26]

    Feng C, Zhang R Q, Dong S L, Niehaus T A, Frauenheim T 2007 J. Phys. Chem. C 111 14131

    [27]

    Lin C S, Zhang R Q, Lee S T, Elstner M, Frauenheim T, Wan L J 2005 J. Phys. Chem. B 109 14183

    [28]

    Elstner M, Hobza P, Frauenheim T, Suhai S, Kaxiras E 2001 J. Chem. Phys. 114 5149

    [29]

    Koga K, Gao G T, Tanaka H, Zeng X C 2001 Nature 412 802

  • [1] Wang Yi-Jun, Wang Liu-Ding, Yang Min, Yan Cheng, Wang Xiao-Dong, Xi Cai-Ping, Li Zhao-Ning. Structural stability and field emission propertiesof cone-capped carbon nanotubes. Acta Physica Sinica, 2011, 60(7): 077303. doi: 10.7498/aps.60.077303
    [2] Cai Na-Li, Wen Yu-Hua, Zhu Zi-Zhong, Shen Han-Xin. Structural stability and electronic structures of Nb atomic chains. Acta Physica Sinica, 2005, 54(11): 5362-5366. doi: 10.7498/aps.54.5362
    [3] Li Ren-Quan, Pan Chun-Ling, Wen Yu-Hua, Zhu Zi-Zhong. The structural stability and magnetism of Ag atomic chains. Acta Physica Sinica, 2009, 58(4): 2752-2756. doi: 10.7498/aps.58.2752
    [4] Lin Xi-Wei, Xia Ming-Xia, Yan Ning, Li Hong-Xing, Ning Nai-Dong, Xie Zhong. Study of structure stability and decoration of carbon nanotube under applied electric field. Acta Physica Sinica, 2007, 56(1): 113-116. doi: 10.7498/aps.56.113
    [5] Liu Na, Wei Yang, Ma Xin-Guo, Zhu Lin, Xu Guo-Wang, Chu Liang, Huang Chu-Yun. Theoretical study on the stability and photoelectric properties of APbI3 perovskite. Acta Physica Sinica, 2017, 66(5): 057103. doi: 10.7498/aps.66.057103
    [6] Wang Zhi-Gang, Zhang Yang, Wen Yu-Hua, Zhu Zi-Zhong. First-principles calculation of structural stability and electronic properties of ZnO atomic chains. Acta Physica Sinica, 2010, 59(3): 2051-2056. doi: 10.7498/aps.59.2051
    [7] Xu Ying-Ying, Kan Yu-He, Wu Jie, Tao Wei, Su Zhong-Min. Theoretical study on the electronic structures and photophysical properties of carbon nanorings and their analogues. Acta Physica Sinica, 2013, 62(8): 083101. doi: 10.7498/aps.62.083101
    [8] Xu Can, Zhang Xiao-Fang, Chen Liang. Electronic properties of MgO nanotube clusters studied with density functional theory. Acta Physica Sinica, 2009, 58(3): 1603-1607. doi: 10.7498/aps.58.1603
    [9] Teng Bo-Tao, Jiang Shi-Yu, Yang Pei-Fang, Hu Juan-Mei, Wu Feng-Min. Density functional theory study of rhodium adsorption on single-wall carbon nanotubes. Acta Physica Sinica, 2009, 58(5): 3331-3337. doi: 10.7498/aps.58.3331
    [10] Wang Ya-Jing, Li Gui-Xia, Wang Zhi-Hua, Gong Li-Ji, Wang Xiu-Fang. Diameter monodispersity of imogolite-like nanotube: a density functional theory study. Acta Physica Sinica, 2016, 65(4): 048101. doi: 10.7498/aps.65.048101
  • Citation:
Metrics
  • Abstract views:  3701
  • PDF Downloads:  872
  • Cited By: 0
Publishing process
  • Received Date:  05 December 2009
  • Accepted Date:  16 April 2010
  • Published Online:  15 January 2011

Study on the structure of water chain encapsulated in carbon nanotube by density functional theory

  • 1. (1)Zhengzhou University, School of Material Science and Engineering, Zhengzhou 450001, China; (2)Zhengzhou University, School of Material Science and Engineering, Zhengzhou 450001, China;Zhengzhou Institute of Aeronautical Industry Management, Zhengzhou 450015, China

Abstract: The structure of water molecules encapsulated in single-walled carbon nanotubes (SWCNTs) was studied using a self-consistent charge density functional tight binding method with dispersion correction. The most interesting and important feature observed is the diameter shrinkage of SWCNTs when water chains are confined inside them. The diameter shrinking of SWCNTs may be due to the van der Waals and H-π interaction between water chains and SWCNTs. The binding energy decreases with the increase of the nanotube radius. But when the radius is increased to 6.78 ?, the binding energy is a little increased, and the water chain has changed as a "book-like" structure, which suggests that the weak hydrogen bonding in the isolated water chains is larger than the interaction between water chains and the SWCNTs.

Reference (29)

Catalog

    /

    返回文章
    返回