Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Structural, electronic, and optical properties of Li-n-1, Lin and Li+ n+1(n=20, 40) clusters by first-principles calculations

Guo Zhao Lu Bin Jiang Xue Zhao Ji-Jun

Structural, electronic, and optical properties of Li-n-1, Lin and Li+ n+1(n=20, 40) clusters by first-principles calculations

Guo Zhao, Lu Bin, Jiang Xue, Zhao Ji-Jun
PDF
Get Citation
  • The lowest-energy structures of Li-n-1, Lin and Li+n+1 clusters (n=20, 40) were determined from first-principles simulated annealing followed by geometry optimization within the density functional theory. The growth mechanism of Lin clusters is based on nested multiple polyhedron. Other atoms form pentagonal pyramid centered on the core polyhedron. From our first-principles calculations, the molecular orbital levels can be divided into several groups, which are in good agreement with the electron shells described by structureless jellium model. With the same amount of valence electrons, the number of ions and charge states in the Li clusters have only little effect on the electronic structures. Li-19, Li20, Li+21 and Li-39, Li40, Li+41 exhibit similar energy level distributions, respectively, indicating that the momentum order is the dominating factor for these clusters. The optical absorption spectra of Li-n-1, Lin and Li+n+1 (n=20, 40) clusters from time-dependent density functional theory calculations show giant resonance phenomenon and the simulated resonance peaks agree with experimental values. With same amount of valence electrons, the polarizability decreases with the number of ions and the optical resonance peaks blueshift as the ionic number increases.
    • Funds:
    [1]

    Li B, Yang C L, Qi K T, Zhang Y, Sheng Y 2009 Acta Phys. Sin. 58 3104 (in Chinese) [李 兵、杨传路、齐凯天、张 岩、盛 勇 2009 物理学报 58 3104]

    [2]

    Chen L, Xu C, Zhang X F 2009 Acta Phys. Sin. 58 1603(in Chinese)[陈 亮、徐 灿、张小芳 2009 物理学报 58 1603]

    [3]

    Lu Z H, Cao J X, 2008 Chin. Phys. B 17 3336

    [4]

    Zhang C R, Chen Y H, Wang D B, Wu Y Z, Chen H S 2008 Chin. Phys. B 17 2938

    [5]

    Ellert C, Schmidt M, Schmitt C, Haberland H, Guet C 1999 Phys. Rev. B 59 R7841

    [6]

    Knight W D, Clemenger K, de Heer W A, Saunders W A, Chou M Y, Cohen M L 1984 Phys. Rev. Lett. 52 2141

    [7]

    de Heer W A 1993 Rev. Mod. Phys. 65 611

    [8]

    Yannouleas C, Vigezzi E, Broglia R A 1993 Phys. Rev. B 47 9849

    [9]

    Bréchignac C, Connerade J P 1994 J. Phys. B 27 3795

    [10]

    Kornath A, Kaufmann A, Zoermer A, Ludwig R 2003 J. Chem. Phys. 118 6957

    [11]

    Bréchignac C, Cahuzac P, Leygnier J, Sarfati A 1993 Phys. Rev. Lett. 70 2036

    [12]

    Bréchignac C, Busch H, Cahuzac P, Leygnier J 1994 J. Chem. Phys. 101 6992

    [13]

    Dugourd P, Rayane D, Labastie P, Vezin B, Chevaleyre J, Broyer M 1992 Chem. Phys. Lett. 197 433

    [14]

    Benichou E, Antoine R, Rayane D, Vezin B, Dalby F W, Dugourd P, Broyer M, Ristori C, Chandezon F, Huber B A, Rocco J C, Blundell S A, Guet C 1999 Phys. Rev. A 59 R1

    [15]

    Antoine R, Rayane D, Allouche A R, Aubert-Frecon M, Benichou E, Dalby F W, Dugourd P, Broyer M, Guet C 1999 J. Chem. Phys. 110 5568

    [16]

    Rao B K, Jena P 1985 Phys. Rev. B 32 2058

    [17]

    Rao B K, Jena P, Manninen M 1985 Phys. Rev. B 32 477

    [18]

    Wang F, Andriopoulos N, Wright N, Nagy-Felsobuki E I 1991 J. Cluster Sci. 2 203

    [19]

    Boustani I, Pewestorf W, Fantucci P, Bonai Dc' -Kouteck V, Koutecky J 1987 Phys. Rev. B 35 9437

    [20]

    Sugino O, Kamimura H 1990 Phys. Rev. Lett. 65 2696

    [21]

    Wheeler S E, Schaefer III H F 2005 J. Chem. Phys. 122 204328

    [22]

    Gardet G, Rogemond F, Chermette H 1996 J. Chem. Phys. 105 9933

    [23]

    Fournier R, Cheng J B Y, Wong A 2003 J. Chem. Phys. 119 9444

    [24]

    Jose K V J, Gadre S R 2008 J. Chem. Phys. 129 164314

    [25]

    Chandrakumar K R S, Ghanty T K, Ghosh S K 2004 J. Phys. Chem. A 108 6661

    [26]

    Bréchignac C, Cahuzac P, Carlier F, Leygnier J 1989 Chem. Phys. Lett. 164 433

    [27]

    Dugourd P, Blanc J, Bona i Dc' -Kouteck V, Broyer M, Chevaleyre J, Koutecky J, Pittner J, Wolf J P, Wste L 1991 Phys. Rev. Lett. 67 2638

    [28]

    Blanc J, Bona i Dc' -Kouteck V, Broyer M, Chevaleyre J, Dugourd P, Koutecky J, Scheuch C, Wolf J P, Wste L 1992 J. Chem. Phys. 96 1793

    [29]

    Pacheco J M, Martins J L 1997 J. Chem. Phys. 106 6039

    [30]

    Blundell S A, Guet C 1995 Z. Phys. D 33 153

    [31]

    Yabana K, Bertsch G F 1995 Z. Phys. D 32 329

    [32]

    Harris J 1985 Phys. Rev. B 31 1770

    [33]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [34]

    Delley B 1990 J. Chem. Phys. 92 508

    [35]

    Onida G, Reining L, Rubio A 2002 Rev. Mod. Phys. 74 601

    [36]

    Beck T L 2000 Rev. Mod. Phys. 72 1041

    [37]

    Becke A D 1993 J. Chem. Phys. 98 5648

    [38]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery Jr J A, Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A, Gaussian 03 (Gaussian, Inc., Wallingford CT, 2004)

    [39]

    Li J, Li X, Zhai H J, Wang L S 2003 Science 299 864

    [40]

    Wang J, Wang G, Zhao J 2003 Chem. Phys. Lett. 380 716

    [41]

    Ekardt W 1984 Phys. Rev. B 29 1558

    [42]

    Bjφrnholm S 1990 Comtemp. Phys. 31 390

  • [1]

    Li B, Yang C L, Qi K T, Zhang Y, Sheng Y 2009 Acta Phys. Sin. 58 3104 (in Chinese) [李 兵、杨传路、齐凯天、张 岩、盛 勇 2009 物理学报 58 3104]

    [2]

    Chen L, Xu C, Zhang X F 2009 Acta Phys. Sin. 58 1603(in Chinese)[陈 亮、徐 灿、张小芳 2009 物理学报 58 1603]

    [3]

    Lu Z H, Cao J X, 2008 Chin. Phys. B 17 3336

    [4]

    Zhang C R, Chen Y H, Wang D B, Wu Y Z, Chen H S 2008 Chin. Phys. B 17 2938

    [5]

    Ellert C, Schmidt M, Schmitt C, Haberland H, Guet C 1999 Phys. Rev. B 59 R7841

    [6]

    Knight W D, Clemenger K, de Heer W A, Saunders W A, Chou M Y, Cohen M L 1984 Phys. Rev. Lett. 52 2141

    [7]

    de Heer W A 1993 Rev. Mod. Phys. 65 611

    [8]

    Yannouleas C, Vigezzi E, Broglia R A 1993 Phys. Rev. B 47 9849

    [9]

    Bréchignac C, Connerade J P 1994 J. Phys. B 27 3795

    [10]

    Kornath A, Kaufmann A, Zoermer A, Ludwig R 2003 J. Chem. Phys. 118 6957

    [11]

    Bréchignac C, Cahuzac P, Leygnier J, Sarfati A 1993 Phys. Rev. Lett. 70 2036

    [12]

    Bréchignac C, Busch H, Cahuzac P, Leygnier J 1994 J. Chem. Phys. 101 6992

    [13]

    Dugourd P, Rayane D, Labastie P, Vezin B, Chevaleyre J, Broyer M 1992 Chem. Phys. Lett. 197 433

    [14]

    Benichou E, Antoine R, Rayane D, Vezin B, Dalby F W, Dugourd P, Broyer M, Ristori C, Chandezon F, Huber B A, Rocco J C, Blundell S A, Guet C 1999 Phys. Rev. A 59 R1

    [15]

    Antoine R, Rayane D, Allouche A R, Aubert-Frecon M, Benichou E, Dalby F W, Dugourd P, Broyer M, Guet C 1999 J. Chem. Phys. 110 5568

    [16]

    Rao B K, Jena P 1985 Phys. Rev. B 32 2058

    [17]

    Rao B K, Jena P, Manninen M 1985 Phys. Rev. B 32 477

    [18]

    Wang F, Andriopoulos N, Wright N, Nagy-Felsobuki E I 1991 J. Cluster Sci. 2 203

    [19]

    Boustani I, Pewestorf W, Fantucci P, Bonai Dc' -Kouteck V, Koutecky J 1987 Phys. Rev. B 35 9437

    [20]

    Sugino O, Kamimura H 1990 Phys. Rev. Lett. 65 2696

    [21]

    Wheeler S E, Schaefer III H F 2005 J. Chem. Phys. 122 204328

    [22]

    Gardet G, Rogemond F, Chermette H 1996 J. Chem. Phys. 105 9933

    [23]

    Fournier R, Cheng J B Y, Wong A 2003 J. Chem. Phys. 119 9444

    [24]

    Jose K V J, Gadre S R 2008 J. Chem. Phys. 129 164314

    [25]

    Chandrakumar K R S, Ghanty T K, Ghosh S K 2004 J. Phys. Chem. A 108 6661

    [26]

    Bréchignac C, Cahuzac P, Carlier F, Leygnier J 1989 Chem. Phys. Lett. 164 433

    [27]

    Dugourd P, Blanc J, Bona i Dc' -Kouteck V, Broyer M, Chevaleyre J, Koutecky J, Pittner J, Wolf J P, Wste L 1991 Phys. Rev. Lett. 67 2638

    [28]

    Blanc J, Bona i Dc' -Kouteck V, Broyer M, Chevaleyre J, Dugourd P, Koutecky J, Scheuch C, Wolf J P, Wste L 1992 J. Chem. Phys. 96 1793

    [29]

    Pacheco J M, Martins J L 1997 J. Chem. Phys. 106 6039

    [30]

    Blundell S A, Guet C 1995 Z. Phys. D 33 153

    [31]

    Yabana K, Bertsch G F 1995 Z. Phys. D 32 329

    [32]

    Harris J 1985 Phys. Rev. B 31 1770

    [33]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [34]

    Delley B 1990 J. Chem. Phys. 92 508

    [35]

    Onida G, Reining L, Rubio A 2002 Rev. Mod. Phys. 74 601

    [36]

    Beck T L 2000 Rev. Mod. Phys. 72 1041

    [37]

    Becke A D 1993 J. Chem. Phys. 98 5648

    [38]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery Jr J A, Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A, Gaussian 03 (Gaussian, Inc., Wallingford CT, 2004)

    [39]

    Li J, Li X, Zhai H J, Wang L S 2003 Science 299 864

    [40]

    Wang J, Wang G, Zhao J 2003 Chem. Phys. Lett. 380 716

    [41]

    Ekardt W 1984 Phys. Rev. B 29 1558

    [42]

    Bjφrnholm S 1990 Comtemp. Phys. 31 390

  • [1] Ren Chao, Li Xiu-Yan, Luo Quan-Wei, Liu Rui-Ping, Yang Zhi, Xu Li-Chun. Electronic structure and optical absorption properties of -AgVO3 with vacancy defects. Acta Physica Sinica, 2017, 66(15): 157101. doi: 10.7498/aps.66.157101
    [2] Gou Bing-Cong, Gu Juan, Wang Shan-Ying. The geometrical structure, electronic structure and magnetism of bimetallic AunM2 (n=1,2; M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni) clusters. Acta Physica Sinica, 2009, 58(5): 3338-3351. doi: 10.7498/aps.58.3338
    [3] Hao Jing-An, Zheng Hao-Ping. Theoretical calculation of structures and properties of Ga6N6 cluster. Acta Physica Sinica, 2004, 53(4): 1044-1049. doi: 10.7498/aps.53.1044
    [4] Cui Yong-Feng, Yuan Zhi-Hao. Structural phase transformation and optical absorption of capped TiO2 nanoparticles. Acta Physica Sinica, 2006, 55(10): 5172-5177. doi: 10.7498/aps.55.5172
    [5] Xue Bin, Wang Hong-Yang, Qin Meng, Cao Yi, Wang Wei. A photocatalysis system based on composite nanostructures of controlable peptide nanotubes and graphene. Acta Physica Sinica, 2015, 64(9): 098702. doi: 10.7498/aps.64.098702
    [6] Zhai Shun-Cheng, Guo Ping, Zheng Ji-Ming, Zhao Pu-Ju, Suo Bing-Bing, Wan Yun. First principle study of electronic structures and optical absorption properties of O and S doped graphite phase carbon nitride (g-C3N4)6 quantum dots. Acta Physica Sinica, 2017, 66(18): 187102. doi: 10.7498/aps.66.187102
    [7] Liu Yu-Zhen, Yuan Yong-Bo, Deng Kai-Ming, Yang Jin-Long. Assignment of photoelectron spectra of SiN cluster. Acta Physica Sinica, 2006, 55(9): 4496-4500. doi: 10.7498/aps.55.4496
    [8] Wu Li-Jun, Sui Qiang-Tao, Zhang Duo, Zhang Lin, Qi Yang. Computational study of structures and electronic properties of SimGen (m+n=9) clusters. Acta Physica Sinica, 2015, 64(4): 042102. doi: 10.7498/aps.64.042102
    [9] Zhang Lin, Li Wei, Sun Hai-Xia, Zhang Cai-Bei, Xu Song-Ning. Structural changes during freezing and coalescing of small sized clusters on atomic scale. Acta Physica Sinica, 2009, 58(13): 58-S66. doi: 10.7498/aps.58.58
    [10] Zheng Kai, Wei Yan, Li Bin, Fu Yong-Jun, Wei Huai, Jian Shui-Sheng, Chang De-Yuan. Experimental research on the degree of clustering in Bi3+-Ga3+ co-doped high concentration Er3+-doped silica-based fiber. Acta Physica Sinica, 2008, 57(1): 556-560. doi: 10.7498/aps.57.556
  • Citation:
Metrics
  • Abstract views:  3466
  • PDF Downloads:  842
  • Cited By: 0
Publishing process
  • Received Date:  12 January 2010
  • Accepted Date:  23 February 2010
  • Published Online:  15 January 2011

Structural, electronic, and optical properties of Li-n-1, Lin and Li+ n+1(n=20, 40) clusters by first-principles calculations

  • 1. (1)School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, China; (2)School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, China;College of Advanced Science and Technology, Dalian University of Technology, Dalian 116024, China

Abstract: The lowest-energy structures of Li-n-1, Lin and Li+n+1 clusters (n=20, 40) were determined from first-principles simulated annealing followed by geometry optimization within the density functional theory. The growth mechanism of Lin clusters is based on nested multiple polyhedron. Other atoms form pentagonal pyramid centered on the core polyhedron. From our first-principles calculations, the molecular orbital levels can be divided into several groups, which are in good agreement with the electron shells described by structureless jellium model. With the same amount of valence electrons, the number of ions and charge states in the Li clusters have only little effect on the electronic structures. Li-19, Li20, Li+21 and Li-39, Li40, Li+41 exhibit similar energy level distributions, respectively, indicating that the momentum order is the dominating factor for these clusters. The optical absorption spectra of Li-n-1, Lin and Li+n+1 (n=20, 40) clusters from time-dependent density functional theory calculations show giant resonance phenomenon and the simulated resonance peaks agree with experimental values. With same amount of valence electrons, the polarizability decreases with the number of ions and the optical resonance peaks blueshift as the ionic number increases.

Reference (42)

Catalog

    /

    返回文章
    返回