Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Self-consistent nonlinear theory of gyrotron oscillator with photonic-band-gap cavity

Luo Yao-Tian Tang Chang-Jian

Self-consistent nonlinear theory of gyrotron oscillator with photonic-band-gap cavity

Luo Yao-Tian, Tang Chang-Jian
PDF
Get Citation
  • The effective radius of photonic-band-gap cavity (PBGC) is defined, the validity of using it to treat PBGC as a mode selective cylindrical metal cavity is demonstrated, the guiding role of it in the design of PBGC is revealed, and a self-consistent nonlinear theory is established for gyrotron oscillator with PBGC (PBG gyrotron) based on it. The results of theoretical analysis and numerical calculation show that the azimuthal polarized form (traveling wave or standing wave) of RF field has an obvious effect on the beam-wave interacting process and the device operating at second harmonic can achieve higher electron efficiency than that working at fundamental wave under TE-32 mode, which means PBG gyrotron is capable of operating at both high order electromagnetic mode and high order electronic cyclotron harmonic effectively owing to the excellent mode selective ability of PBGC. This gives a new clue to the research of gyrotron oscillator.
    • Funds:
    [1]

    Carmel Y, Chu K R, Dialetis D, Fliflet A W, Read M E, Kim K J, Arfin B, Granatstein V L 1982 Int. J. IRMM. Waves 3 645

    [2]

    Whaley D R, Tran M Q, Tran T M, Antonsen T M 1994 IEEE Trans. Plasma Sci. 22 850

    [3]

    Chu K R 1978 Phys. Fluids 21 2354

    [4]

    Yablonovitch E, Gmitter T J, Leung K M 1991 Phys. Rev. Lett. 67 2295

    [5]

    Shapiro M A, Brown W J, Mastovsky I, Sirigiri J R, Temkin R J 2001 Phys. Rev. Spl. Topics 4 042001

    [6]

    Smirnova E I, Chen C, Shapiro M A, Sirigiri J R, Temkin R J 2002 J. App. Phys. 91 960

    [7]

    Smirnova E I, Kesar A S, Mastovsky I, Shapiro M A, Temkin R J 2005 Phys. Rev. Lett. 95 074801

    [8]

    Hao B L, Liu P K, Tang C J 2006 Acta Phys. Sin. 55 1862 (in Chinese) [郝保良、刘濮鲲、唐昌建 2006 物理学报 55 1862]

    [9]

    Gao X, Yang Z Q, Hou J, Yuan L M, Lan F, Shi Z J, Li D Z, Liang Z 2009 Acta Phys. Sin. 58 1105 (in Chinese) [高 喜、杨梓强、侯 钧、元丽梅、兰 峰、史宗军、李大治、梁 正 2009 物理学报 58 1105]

    [10]

    Liu C, Luo Y T, Tang C J, Liu P K 2009 Acta Phys. Sin. 58 8174 (in Chinese) [刘 畅、罗尧天、唐昌建、刘濮鲲 2009 物理学报 58 8174]

    [11]

    Liu Y, Gong H R, Wei Y Y, Gong Y B, Wang W X, Liao F J 2009 Acta Phys. Sin. 58 7845 (in Chinese) [刘 漾、巩华荣、魏彦玉、龚玉彬、王文祥、廖复疆 2009 物理学报 58 7845]

    [12]

    Sirigiri J R, Kreischer K E, Machuzak J, Mastovsky I, Shapiro M A, Temkin R J 2001 Phys. Rev. Lett. 86 5628

    [13]

    Kuzmiak V, Maradudin A A, Pincemin F 1994 Phys. Rev. B 50 16835

    [14]

    Fliflet A W 1986 Int. J. Electron. 61 1049

    [15]

    Fliflet A W, Read M E, Chu K R, Seeley R 1982 Int. J. Electron. 53 505

    [16]

    Fliflet A W, Manheimer W M 1989 Phys. Rev. A 39 3432

    [17]

    Danly B G, Temkin R J 1986 Phys. Fluids 29 561

    [18]

    Li H F, Du P Z 1984 Acta Electron. Sin. 12 76

  • [1]

    Carmel Y, Chu K R, Dialetis D, Fliflet A W, Read M E, Kim K J, Arfin B, Granatstein V L 1982 Int. J. IRMM. Waves 3 645

    [2]

    Whaley D R, Tran M Q, Tran T M, Antonsen T M 1994 IEEE Trans. Plasma Sci. 22 850

    [3]

    Chu K R 1978 Phys. Fluids 21 2354

    [4]

    Yablonovitch E, Gmitter T J, Leung K M 1991 Phys. Rev. Lett. 67 2295

    [5]

    Shapiro M A, Brown W J, Mastovsky I, Sirigiri J R, Temkin R J 2001 Phys. Rev. Spl. Topics 4 042001

    [6]

    Smirnova E I, Chen C, Shapiro M A, Sirigiri J R, Temkin R J 2002 J. App. Phys. 91 960

    [7]

    Smirnova E I, Kesar A S, Mastovsky I, Shapiro M A, Temkin R J 2005 Phys. Rev. Lett. 95 074801

    [8]

    Hao B L, Liu P K, Tang C J 2006 Acta Phys. Sin. 55 1862 (in Chinese) [郝保良、刘濮鲲、唐昌建 2006 物理学报 55 1862]

    [9]

    Gao X, Yang Z Q, Hou J, Yuan L M, Lan F, Shi Z J, Li D Z, Liang Z 2009 Acta Phys. Sin. 58 1105 (in Chinese) [高 喜、杨梓强、侯 钧、元丽梅、兰 峰、史宗军、李大治、梁 正 2009 物理学报 58 1105]

    [10]

    Liu C, Luo Y T, Tang C J, Liu P K 2009 Acta Phys. Sin. 58 8174 (in Chinese) [刘 畅、罗尧天、唐昌建、刘濮鲲 2009 物理学报 58 8174]

    [11]

    Liu Y, Gong H R, Wei Y Y, Gong Y B, Wang W X, Liao F J 2009 Acta Phys. Sin. 58 7845 (in Chinese) [刘 漾、巩华荣、魏彦玉、龚玉彬、王文祥、廖复疆 2009 物理学报 58 7845]

    [12]

    Sirigiri J R, Kreischer K E, Machuzak J, Mastovsky I, Shapiro M A, Temkin R J 2001 Phys. Rev. Lett. 86 5628

    [13]

    Kuzmiak V, Maradudin A A, Pincemin F 1994 Phys. Rev. B 50 16835

    [14]

    Fliflet A W 1986 Int. J. Electron. 61 1049

    [15]

    Fliflet A W, Read M E, Chu K R, Seeley R 1982 Int. J. Electron. 53 505

    [16]

    Fliflet A W, Manheimer W M 1989 Phys. Rev. A 39 3432

    [17]

    Danly B G, Temkin R J 1986 Phys. Fluids 29 561

    [18]

    Li H F, Du P Z 1984 Acta Electron. Sin. 12 76

  • [1] YU SHENG, LI HONG-FU, XIE ZHONG-LIAN, LUO YONG. A NONLINEAR SIMULATION ON BEAM-WAVE INTERACTION FOR HIGH-HARMONIC COMPLEX CAVITY GYROTRON WITH RADUAL TRANSITION. Acta Physica Sinica, 2000, 49(12): 2455-2459. doi: 10.7498/aps.49.2455
    [2] LI HONG-FU, XIE ZHONG-LIAN, LUO YONG, YU SHENG. A NONLINEAR ANALYSIS ON 8mm BAND THIRD-HARMONIC COMPLEX CAVITY GYROTRON WITH GRADUAL TRANSITION. Acta Physica Sinica, 2001, 50(10): 1979-1983. doi: 10.7498/aps.50.1979
    [3] Huang Li-Ping, Hong Bin-Bin, Liu Chang, Tang Chang-Jian. Study on 220 GHz third harmonic photonic band gap cavity gyrotron oscillator. Acta Physica Sinica, 2014, 63(11): 118401. doi: 10.7498/aps.63.118401
    [4] Han Yu, Yuan Xue-Song, Ma Chun-Yan, Yan Yang. Study of a gyrotron oscillator with corrugated interaction cavity. Acta Physica Sinica, 2012, 61(6): 064102. doi: 10.7498/aps.61.064102
    [5] Lei Chao-Jun, Yu Sheng, Li Hong-Fu, Niu Xin-Jian, Liu Ying-Hui, Hou Shen-Yong, Zhang Tian-Zhong. Study on gradually-varying cavity for a gyrotron. Acta Physica Sinica, 2012, 61(18): 180202. doi: 10.7498/aps.61.180202
    [6] Luo Yao-Tian, Tang Chang-Jian, Liu Chang, Liu Pu-Kun. Electromagnetic mode analysis on the cold characteristics of photonic-band-gap resonant cavity loaded in gyrotron. Acta Physica Sinica, 2009, 58(12): 8174-8179. doi: 10.7498/aps.58.8174
    [7] Liu Rui, Li Hong-Fu, Niu Xin-Jian. A new algorithm of calculating eigenmodes of gyrotron resonators. Acta Physica Sinica, 2011, 60(9): 090205. doi: 10.7498/aps.60.090205
    [8] Liu Ying-Hui, Li Hong-Fu, Li Hao, Wang E-Feng, Xu Yong, Wang Hui, Wang Li. Analysis of an open cavity with abrupt changes by S-matrix. Acta Physica Sinica, 2006, 55(4): 1718-1723. doi: 10.7498/aps.55.1718
    [9] Wang Hu, Shen Wen-Yuan, Geng Zhi-Hui, Xu Shou-Xi, Wang Bin, Du Chao-Hai, Liu Pu-Kun. Stady on a high efficient Denisov-type launcher for high-power gyrotron oscillators. Acta Physica Sinica, 2013, 62(23): 238401. doi: 10.7498/aps.62.238401
    [10] Liu Pu-Kun, Geng Zhi-Hui, Xu Shou-Xi, Wang Bin, Du Chao-Hai. Study and design of a quasi-optical mode converter for W-band whispering-gallery mode gyrotron. Acta Physica Sinica, 2010, 59(4): 2512-2518. doi: 10.7498/aps.59.2512
  • Citation:
Metrics
  • Abstract views:  3523
  • PDF Downloads:  919
  • Cited By: 0
Publishing process
  • Received Date:  11 January 2010
  • Accepted Date:  19 March 2010
  • Published Online:  15 January 2011

Self-consistent nonlinear theory of gyrotron oscillator with photonic-band-gap cavity

  • 1. School of Physical Science and Technology, Sichuan University, Chengdu 610065, China

Abstract: The effective radius of photonic-band-gap cavity (PBGC) is defined, the validity of using it to treat PBGC as a mode selective cylindrical metal cavity is demonstrated, the guiding role of it in the design of PBGC is revealed, and a self-consistent nonlinear theory is established for gyrotron oscillator with PBGC (PBG gyrotron) based on it. The results of theoretical analysis and numerical calculation show that the azimuthal polarized form (traveling wave or standing wave) of RF field has an obvious effect on the beam-wave interacting process and the device operating at second harmonic can achieve higher electron efficiency than that working at fundamental wave under TE-32 mode, which means PBG gyrotron is capable of operating at both high order electromagnetic mode and high order electronic cyclotron harmonic effectively owing to the excellent mode selective ability of PBGC. This gives a new clue to the research of gyrotron oscillator.

Reference (18)

Catalog

    /

    返回文章
    返回