Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Characterization of atmospheric pressuredc gliding arc plasma

Ni Ming-Jiang Yu Liang Li Xiao-Dong Wang Yu Yan Jian-Hua Tu Xin

Characterization of atmospheric pressuredc gliding arc plasma

Ni Ming-Jiang, Yu Liang, Li Xiao-Dong, Wang Yu, Yan Jian-Hua, Tu Xin
PDF
Get Citation
  • The atmospheric pressure dc gliding arc plasma was investigated through its electrical and optical signals. The arc voltages of various gas discharges were compared. The arc voltage, current, power and resistance of a nitrogen gliding arc in one period were studied. Influences of gas type, gas flow rate and external resistor on the gliding arc fluctuation behaviour were studied using FFT spectrum analysis. Increased main oscillation frequency was observed as gas flow rate or external resistance value increased. Furthermore, major radical species in nitrogen, oxygen and air discharges were determined by means of optical emission spectroscopy. Additionally, the effect of external resistor on the relative intensity of radical emission and axial distribution of relative intensity at 337.1 nm (N2(C3Πu→B3Πg), Δv=0) were studied. Experimental results showed that radical emission relative intensity decreases with the increasing of external resistance value. The axial distribution of relative intensity exhibits the tendencies of increasing first and then decreasing. The radical emission relative intensity decreases dramatically out of the plasma area.
    • Funds:
    [1]

    Fridman A, Chirokov A, Gutsol A 2005 J. Phys. D-Appl. Phys. 38 R1

    [2]

    Zhang X H, Huang J, Lu X D, Peng L, Sun Y, Chen W, Feng K C, Yang S Z 2009 Acta Phys. Sin. 58 1595 (in Chinese) [张先徽、黄 骏、刘筱娣、彭 磊、孙 岳、陈 维、冯克成、杨思泽 2009 物理学报 58 1595]

    [3]

    Zhang Y C, Zhu H Y, Wu H Y, Qiu Y P 2009 Acta Phys. Sin. 58 S298 (in Chinese) [张迎晨、朱海燕、吴红艳、邱夷平 2009 物理学报 58 S298]

    [4]

    Sun J, Zhang J L, Wang D Z, Ma T C 2006 Acta Phys. Sin. 55 344 (in Chinese) [孙 姣、张家良、王德真、马腾才 2006 物理学报 55 344]

    [5]

    Liu Y H, Zhang J L, Wang W G, Jian L, Liu D P, Ma T C 2006 Acta Phys. Sin. 55 1458 (in Chinese) [刘艳红、张家良、王卫国、李 建、刘东平、马腾才 2006 物理学报 54 1458]

    [6]

    Fridman A, Nester S, Kennedy L A, Saveliev A, Mutaf-Yardimci O 1999 Prog. Energy Combust. Sci. 25 211

    [7]

    Czernichowski A 1994 Pure Appl. Chem. 66 1301

    [8]

    Benstaali B, Moussa D, Addou A, Brisset J L 1998 Eur. Phys. J.-Appl. Phys. 4 171

    [9]

    Krawczyk K 2006 Przem. Chem. 85 1035

    [10]

    Lin L, Wu B, Yang C, Wu C K 2006 Plasma Sci. Technol. 8 653

    [11]

    Zhao Y H, Ma Q, Xia W D 2008 Plasma Sci. Technol. 10 65

    [12]

    Yu L, Yan J H, Tu X, Li X D, Lu S Y, Cen K F 2008 EPL (Europhysics Letters) 83 45001

    [13]

    Yu L, Li X D, Tu X, Wang Y, Lu S Y, Yan J H 2010 J. Phys. Chem. A 114 360

    [14]

    Tu X, Yu L, Yan J H, Cen K F, Cheron B G 2009 Phys. Plasmas 16 113506

    [15]

    Yan J H, Bo Z, Li X D, Du C M, Cen K F, Cheron B G 2007 Plasma Chem. Plasma Process. 27 115

    [16]

    Kuznetsova I V, Kalashnikov N Y, Gutsol A F, Fridman A A, Kennedy L A 2002 J. Appl. Phys. 92 4231

    [17]

    Delair L, Brisset J L, Cheron B G 2001 High Temp. Mater. Process 5 381

    [18]

    Bo Z, Yan J H, Li X D, Chi Y, Cen K F 2008 J. Hazard. Mater. 155 494

  • [1]

    Fridman A, Chirokov A, Gutsol A 2005 J. Phys. D-Appl. Phys. 38 R1

    [2]

    Zhang X H, Huang J, Lu X D, Peng L, Sun Y, Chen W, Feng K C, Yang S Z 2009 Acta Phys. Sin. 58 1595 (in Chinese) [张先徽、黄 骏、刘筱娣、彭 磊、孙 岳、陈 维、冯克成、杨思泽 2009 物理学报 58 1595]

    [3]

    Zhang Y C, Zhu H Y, Wu H Y, Qiu Y P 2009 Acta Phys. Sin. 58 S298 (in Chinese) [张迎晨、朱海燕、吴红艳、邱夷平 2009 物理学报 58 S298]

    [4]

    Sun J, Zhang J L, Wang D Z, Ma T C 2006 Acta Phys. Sin. 55 344 (in Chinese) [孙 姣、张家良、王德真、马腾才 2006 物理学报 55 344]

    [5]

    Liu Y H, Zhang J L, Wang W G, Jian L, Liu D P, Ma T C 2006 Acta Phys. Sin. 55 1458 (in Chinese) [刘艳红、张家良、王卫国、李 建、刘东平、马腾才 2006 物理学报 54 1458]

    [6]

    Fridman A, Nester S, Kennedy L A, Saveliev A, Mutaf-Yardimci O 1999 Prog. Energy Combust. Sci. 25 211

    [7]

    Czernichowski A 1994 Pure Appl. Chem. 66 1301

    [8]

    Benstaali B, Moussa D, Addou A, Brisset J L 1998 Eur. Phys. J.-Appl. Phys. 4 171

    [9]

    Krawczyk K 2006 Przem. Chem. 85 1035

    [10]

    Lin L, Wu B, Yang C, Wu C K 2006 Plasma Sci. Technol. 8 653

    [11]

    Zhao Y H, Ma Q, Xia W D 2008 Plasma Sci. Technol. 10 65

    [12]

    Yu L, Yan J H, Tu X, Li X D, Lu S Y, Cen K F 2008 EPL (Europhysics Letters) 83 45001

    [13]

    Yu L, Li X D, Tu X, Wang Y, Lu S Y, Yan J H 2010 J. Phys. Chem. A 114 360

    [14]

    Tu X, Yu L, Yan J H, Cen K F, Cheron B G 2009 Phys. Plasmas 16 113506

    [15]

    Yan J H, Bo Z, Li X D, Du C M, Cen K F, Cheron B G 2007 Plasma Chem. Plasma Process. 27 115

    [16]

    Kuznetsova I V, Kalashnikov N Y, Gutsol A F, Fridman A A, Kennedy L A 2002 J. Appl. Phys. 92 4231

    [17]

    Delair L, Brisset J L, Cheron B G 2001 High Temp. Mater. Process 5 381

    [18]

    Bo Z, Yan J H, Li X D, Chi Y, Cen K F 2008 J. Hazard. Mater. 155 494

  • [1] Wang Yu, Li Xiao-Dong, Yu Liang, Yan Jian-Hua. Numerical simulation study on characteristics of gliding arc discharge. Acta Physica Sinica, 2011, 60(3): 035203. doi: 10.7498/aps.60.035203
    [2] Niu Tian-Ye, Cao Jin-Xiang, Liu Lei, Liu Jin-Ying, Wang Yan, Wang Liang, Lü You, Wang Ge, Zhu Ying. The techniques of single probe and emission spectroscopy diagnostics in low temperature argon plasmas. Acta Physica Sinica, 2007, 56(4): 2330-2336. doi: 10.7498/aps.56.2330
    [3] Yi You-Gen, Tang Jing-Wu, Huang Du-Zhi. Theoretical calculations of X-ray spectra of Au plasma. Acta Physica Sinica, 2010, 59(11): 7769-7774. doi: 10.7498/aps.59.7769
    [4] Gao Xun, Song Xiao-Wei, Tao Hai-Yan, Lin Jing-Quan, Guo Kai-Min. Optical emission spectra of Si plasma induced by femtosecond laser pulse. Acta Physica Sinica, 2011, 60(2): 025203. doi: 10.7498/aps.60.025203
    [5] Zhu Zhu-Qing, Wang Xiao-Lei. Experimental study on emission spectra of air plasma induced by femtosecond laser pulses. Acta Physica Sinica, 2011, 60(8): 085205. doi: 10.7498/aps.60.085205
    [6] Pu Yu-Dong, Yang Jia-Min, Jin Feng-Tao, Zhang Lu, Ding Yong-Kun. Characteristics of emission spectroscopyof radiatively heated Al plasma. Acta Physica Sinica, 2011, 60(4): 045210. doi: 10.7498/aps.60.045210
    [7] Du Yong-Quan, Liu Wen-Yao, Zhu Ai-Min, Li Xiao-Song, Zhao Tian-Liang, Liu Yong-Xin, Gao Fei, Xu Yong, Wang You-Nian. Phase resolved optical emission spectroscopy of dual frequency capacitively coupled plasma. Acta Physica Sinica, 2013, 62(20): 205208. doi: 10.7498/aps.62.205208
    [8] Huang Song, Xin Yu, NingZhao-Yuan. Studies on C22 radical by optical emission spectroscopy in an induc tively-coupled CF44/CH44 plasma. Acta Physica Sinica, 2005, 54(4): 1653-1658. doi: 10.7498/aps.54.1653
    [9] Li Xue-Chen, Yuan Ning, Jia Peng-Ying, Chang Yuan-Yuan, Ji Ya-Fei. Characteristics of atmospheric pressure air uniform discharge generated by a plasma needle. Acta Physica Sinica, 2011, 60(12): 125204. doi: 10.7498/aps.60.125204
    [10] Huang Wen-Tong, Li Shou-Zhe, Wang De-Zhen, Ma Teng-Cai. Characteristics of the plasma discharge generated in dielectric capillary at atmospheric pressure. Acta Physica Sinica, 2010, 59(6): 4110-4116. doi: 10.7498/aps.59.4110
  • Citation:
Metrics
  • Abstract views:  3868
  • PDF Downloads:  1823
  • Cited By: 0
Publishing process
  • Received Date:  01 March 2010
  • Accepted Date:  24 March 2010
  • Published Online:  15 January 2011

Characterization of atmospheric pressuredc gliding arc plasma

  • 1. (1)State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China; (2)The University of Manchester, Manchester, M13 9PL, UK

Abstract: The atmospheric pressure dc gliding arc plasma was investigated through its electrical and optical signals. The arc voltages of various gas discharges were compared. The arc voltage, current, power and resistance of a nitrogen gliding arc in one period were studied. Influences of gas type, gas flow rate and external resistor on the gliding arc fluctuation behaviour were studied using FFT spectrum analysis. Increased main oscillation frequency was observed as gas flow rate or external resistance value increased. Furthermore, major radical species in nitrogen, oxygen and air discharges were determined by means of optical emission spectroscopy. Additionally, the effect of external resistor on the relative intensity of radical emission and axial distribution of relative intensity at 337.1 nm (N2(C3Πu→B3Πg), Δv=0) were studied. Experimental results showed that radical emission relative intensity decreases with the increasing of external resistance value. The axial distribution of relative intensity exhibits the tendencies of increasing first and then decreasing. The radical emission relative intensity decreases dramatically out of the plasma area.

Reference (18)

Catalog

    /

    返回文章
    返回