Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical simulation study on characteristic parameters of microcavity discharge in argon

Zhu Yu Zhu Guo-Qiang Xia Guang-Qing Xue Wei-Hua Chen Mao-Lin

Numerical simulation study on characteristic parameters of microcavity discharge in argon

Zhu Yu, Zhu Guo-Qiang, Xia Guang-Qing, Xue Wei-Hua, Chen Mao-Lin
PDF
Get Citation
  • The two-dimensional numerical model used is based on solutions of fluid equations in the drift-diffusion approximation for the electron and ion transport coupled with Poisson’s equation for electric field to simulate microcavity discharge qualities. The computation results show the potential profile, electron density distribution, ion density distribution, and electron temperature spatial distribution at the argon pressure of 100 Torr. The potential contour shows that the radial component of the electric field becomes very important as the forming of the cathode sheath. The results indicate the peak electron density is 1020 m-3, and the electron temperature is on the order of several to tens of eV.
    • Funds:
    [1]

    Kothnur P S, Yuan X, Raja L L 2003 Appl.Phys. Lett. 82 529

    [2]

    Kothnur P S, Raja L L 2005 J. Appl. Phys. 97 043305

    [3]

    Kushner M J 2004 J. Appl. Phys. 95 846

    [4]

    Miclea M, Kunze K, Heitmann U, Florek S, Franzke J, Niemax K 2005 J. Phys. D: Appl. Phys. 38 1709

    [5]

    Munoz-Serrano E, Hagelaar G, Callegari T, Boeuf J P, Pitchford L C 2006 Plasma Phys. Control. Fusion 48 391

    [6]

    Deconinck T, Raja L L 2009 Plasma Process. Polym. 6 335

    [7]

    Yao X L, Wang X B, Lai J J 2003 Acta Phys. Sin. 52 1450 (in Chinese)[姚细林、王新兵、赖建军 2003 物理学报52 1450]

    [8]

    Zhou L N, Wang X B 2004 Acta Phys. Sin. 53 3440 (in Chinese)[周俐娜、王新兵 2004 物理学报53 3440]

    [9]

    Boeuf J P, Pitchford L C 1995 Phys. Rev. E 51 1376

    [10]

    Zhang H Y, Wang D Z, Wang X G 2007 Chin. Phys. 16 1089

    [11]

    Li Y X, Ma Y, Shao X J, Zhang G J 2010 Acta Phys. Sin. 59 8747 (in Chinese)[李娅西、马 跃、邵先军、张冠军 2010 物 理学报 59 8747] 〖12] Ouyang J M, Shao F Q, Wang L, Fang T Z, Liu J Q 2006 Acta Phys. Sin. 55 4974 (in Chinese)[欧阳建明、邵福球、王 龙、房同珍、刘建全 2006 物理学报55 4974]

    [12]

    Brown S C 1966 Basic Data of Plasma Physics (Massachusetts: Massachusetts Institute of Technology Press)p182

    [13]

    Passchier J D P, Goedheer W J J 1993 J. Appl. Phys. 74 3744

    [14]

    Zhao Y L 2008 MS Thesis(Dalian: Dalian University of Technology)(in Chinese) [赵永莉 2008 硕士学位论文 (大连:大连理工大学)]

    [15]

    Barnes M S, Colter T J, Elta M E 1986 J. Appl. Phys. 61 81

    [16]

    Qiu L, Meng Y D, Ren Z X 2006 Acta Phys. Sin. 55 5872 (in Chinese)[裘 亮、孟月东、任兆杏 2006 物理学报 55 5872]

    [17]

    Xia G Q, Sadeghi N 2009 29th International Conference on Phenomena in Ionized Gases, Cancún, México, July 12—17, 2009, p10

  • [1]

    Kothnur P S, Yuan X, Raja L L 2003 Appl.Phys. Lett. 82 529

    [2]

    Kothnur P S, Raja L L 2005 J. Appl. Phys. 97 043305

    [3]

    Kushner M J 2004 J. Appl. Phys. 95 846

    [4]

    Miclea M, Kunze K, Heitmann U, Florek S, Franzke J, Niemax K 2005 J. Phys. D: Appl. Phys. 38 1709

    [5]

    Munoz-Serrano E, Hagelaar G, Callegari T, Boeuf J P, Pitchford L C 2006 Plasma Phys. Control. Fusion 48 391

    [6]

    Deconinck T, Raja L L 2009 Plasma Process. Polym. 6 335

    [7]

    Yao X L, Wang X B, Lai J J 2003 Acta Phys. Sin. 52 1450 (in Chinese)[姚细林、王新兵、赖建军 2003 物理学报52 1450]

    [8]

    Zhou L N, Wang X B 2004 Acta Phys. Sin. 53 3440 (in Chinese)[周俐娜、王新兵 2004 物理学报53 3440]

    [9]

    Boeuf J P, Pitchford L C 1995 Phys. Rev. E 51 1376

    [10]

    Zhang H Y, Wang D Z, Wang X G 2007 Chin. Phys. 16 1089

    [11]

    Li Y X, Ma Y, Shao X J, Zhang G J 2010 Acta Phys. Sin. 59 8747 (in Chinese)[李娅西、马 跃、邵先军、张冠军 2010 物 理学报 59 8747] 〖12] Ouyang J M, Shao F Q, Wang L, Fang T Z, Liu J Q 2006 Acta Phys. Sin. 55 4974 (in Chinese)[欧阳建明、邵福球、王 龙、房同珍、刘建全 2006 物理学报55 4974]

    [12]

    Brown S C 1966 Basic Data of Plasma Physics (Massachusetts: Massachusetts Institute of Technology Press)p182

    [13]

    Passchier J D P, Goedheer W J J 1993 J. Appl. Phys. 74 3744

    [14]

    Zhao Y L 2008 MS Thesis(Dalian: Dalian University of Technology)(in Chinese) [赵永莉 2008 硕士学位论文 (大连:大连理工大学)]

    [15]

    Barnes M S, Colter T J, Elta M E 1986 J. Appl. Phys. 61 81

    [16]

    Qiu L, Meng Y D, Ren Z X 2006 Acta Phys. Sin. 55 5872 (in Chinese)[裘 亮、孟月东、任兆杏 2006 物理学报 55 5872]

    [17]

    Xia G Q, Sadeghi N 2009 29th International Conference on Phenomena in Ionized Gases, Cancún, México, July 12—17, 2009, p10

  • [1] Zhou Li-Na, Wang Xin-Bing. A fluid model for the simulation of discharges in microhollow cathode. Acta Physica Sinica, 2004, 53(10): 3440-3446. doi: 10.7498/aps.53.3440
    [2] Yang Juan, Shi Feng, Yang Tie-Lian, Meng Zhi-Qiang. Numerical simulation on the plasma field within discharge chamber of electron cyclotron resonance ion thruster. Acta Physica Sinica, 2010, 59(12): 8701-8706. doi: 10.7498/aps.59.8701
    [3] Dong Ye, Dong Zhi-Wei, Zhou Qian-Hong, Yang Wen-Yuan, Zhou Hai-Jing. Ionization parameters of high power microwave flashover on dielectric window surface calculated by particle-in-cell simulation for fluid modeling. Acta Physica Sinica, 2014, 63(6): 067901. doi: 10.7498/aps.63.067901
    [4] Zhao Yue-Feng, Wang Chao, Wang Wei-Zong, Li Li, Sun Hao, Shao Tao, Pan Jie. Numerical simulation on particle density and reaction pathways in methane needle-plane discharge plasma at atmospheric pressure. Acta Physica Sinica, 2018, 67(8): 085202. doi: 10.7498/aps.67.20172192
    [5] He Shou-Jie, Zhou Jia, Qu Yu-Xiao, Zhang Bao-Ming, Zhang Ya, Li Qing. Simulation on complex dynamics of hollow cathode discharge in argon. Acta Physica Sinica, 2019, 68(21): 215101. doi: 10.7498/aps.68.20190734
    [6] Che Bi-Xuan, Li Xiao-Kang, Cheng Mou-Sen, Guo Da-Wei, Yang Xiong. A magnetohydrodynamic numerical model with external circuit coupled for pulsed inductive thrusters. Acta Physica Sinica, 2018, 67(1): 015201. doi: 10.7498/aps.67.20171225
    [7] Liu Fu-Cheng, Yan Wen, Wang De-Zhen. Two-dimensional simulation of atmospheric pressure cold plasma jets in a needle-plane electrode configuration. Acta Physica Sinica, 2013, 62(17): 175204. doi: 10.7498/aps.62.175204
    [8] Liu Cheng Sen, Wang De Zhen. Plasma source ion implantation near the end of a cylindrical bore using an auxiliary electrode for finite rise time voltage pulses. Acta Physica Sinica, 2003, 52(1): 109-114. doi: 10.7498/aps.52.109
    [9] He Shou-Jie, Zhang Zhao, Zhao Xue-Na, Li Qing. Spatio-temporal characteristics of microhollow cathode sustained discharge. Acta Physica Sinica, 2017, 66(5): 055101. doi: 10.7498/aps.66.055101
    [10] Shao Xian-Jun, Ma Yue, Li Ya-Xi, Zhang Guan-Jun. One-dimensional simulation of low pressure xenon dielectric barrier discharge. Acta Physica Sinica, 2010, 59(12): 8747-8754. doi: 10.7498/aps.59.8747
  • Citation:
Metrics
  • Abstract views:  3523
  • PDF Downloads:  950
  • Cited By: 0
Publishing process
  • Received Date:  11 May 2010
  • Accepted Date:  31 July 2010
  • Published Online:  15 January 2011

Numerical simulation study on characteristic parameters of microcavity discharge in argon

  • 1. (1)Laboratory on Plasma and Conversion of Energy(LAPLACE), Paul Sabatier University, Toulouse 31062, France; (2)School of Aeronautics and Astronautics, State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China; (3)School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China

Abstract: The two-dimensional numerical model used is based on solutions of fluid equations in the drift-diffusion approximation for the electron and ion transport coupled with Poisson’s equation for electric field to simulate microcavity discharge qualities. The computation results show the potential profile, electron density distribution, ion density distribution, and electron temperature spatial distribution at the argon pressure of 100 Torr. The potential contour shows that the radial component of the electric field becomes very important as the forming of the cathode sheath. The results indicate the peak electron density is 1020 m-3, and the electron temperature is on the order of several to tens of eV.

Reference (17)

Catalog

    /

    返回文章
    返回