Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Anisotropy analysis of surface energy and prediction of surface segregation for fcc metals

Zhang Jian-Min Wang Bo Lu Yan-Dong Gan Xiu-Ying Yin Bao-Xiang Xu Ke-Wei

Anisotropy analysis of surface energy and prediction of surface segregation for fcc metals

Zhang Jian-Min, Wang Bo, Lu Yan-Dong, Gan Xiu-Ying, Yin Bao-Xiang, Xu Ke-Wei
PDF
Get Citation
  • In the atomic scale, the surface energy anisotropy analysis of 38 surface planes of 10 fcc metals Cu, Ag, Au, Ni, Pd, Pt, Rh, Al, Ir and Pb have been simulated by using the elemental variables φ* and nWS and modified analytical embedded-atom method (MAEAM). The results show that the close-packed surface (111) of fcc metals which have the lowest surface energies will grow preferentially, the surface energies for all the other surface planes increase linearly with cosθ(hkl), where cosθ(hkl) are the angles between the surface planes (hkl) and (111), which is consistent with the experimental and the linear-muffin-tin-orbital atomic-sphere approximation (LMTO-ASA) results. A graphical approach which correctly explains the relation of the surface segregation energy and surface energy is employed. We conclude that the surface segregation takes place or not is mainly determined by the rule that an impurity (solute) with lower surface energy will segregate to the surface of the host (solution) with higher surface energy.
    [1]

    Hasson G, Boos Y, Iherbeuval J 1972 Surf. Sci. 31 115

    [2]

    Figuera J, Carter C B, Bartelt N C 2003 Surf. Sci. 531 29238

    [3]

    Wang X M, Shang C J, Yang S W 2005 Acta Metall. Sin. 41 1256 (in Chinese)[王学敏、 尚成嘉、 杨善武 2005 金属学报 41 1256]

    [4]

    Finnis M W, Sinclair J E 1984 Philos. Mag. A 50 45

    [5]

    Deurinck P D, Creemers C 1998 Surf. Sci. 419 62

    [6]

    Zhang C, Tang X, Wang Y L, Zhang Q Y 2005 Acta Phys. Sin. 54 5791 (in Chinese)[张 超、 唐 鑫、 王永亮、 张庆瑜 2005 物理学报 54 5791]

    [7]

    He J H, Carosella C A, Hubler G K, Qadri S B, Sprague J A 2006 Phys. Rev. B 73 235406

    [8]

    Fritschea L, Kollerb J 2003 J. Solid State Chem. 176 652

    [9]

    Geng W T 2003 Phys. Rev. B 68 233402

    [10]

    Skriver H L, Rosengaard N M 1992 Phys. Rev. B 46 7157

    [11]

    Zhang B W, Hu W Y, Shu X L 2002 Theory of Embedded Atom Method and Its Application to Materials Science (Changsha: Hunan University Press) (in Chinese)[张邦维、 胡望宇、 舒小林 2002 嵌入原子方法理论及其在材料科学中的应用(长沙:湖南大学出版社)]

    [12]

    Ma F, Zhang J M, Xu K W 2004 Surf. Interface Anal. 36 355

    [13]

    Zhang J M, Xin H, Wei X M 2005 Acta Phys. Sin. 54 237 (in Chinese)[张建民、 辛 红、 魏秀梅 2005 物理学报 54 237]

    [14]

    Zhang J M, Wei X M, Xin H 2005 Appl. Surf. Sci. 243 1

    [15]

    Zhang J M, Huang Y H, Wu X J, Xu K W 2006 Appl. Surf. Sci. 252 4936

    [16]

    Shu Y, Zhang J M, Xu K W 2006 Acta Phys. Sin. 55 4103 (in Chinese) [舒 瑜、 张建民、 徐可为 2006 物理学报 55 4103]

    [17]

    Zhang J M, Song X L, Zhang X J, Xu K W, Ji V 2006 Surf. Sci. 600 1277

    [18]

    Zhang J M, Song X L, Zhang X J, Xu K W 2006 J. Phys. Chem. Solids. 67 7

    [19]

    Hamilton J C 1979 Phys. Rev. Lett. 42 989

    [20]

    Zhang B W, Ouyang Y F, Liao S Z, Jin Z P 1999 Phys. B 26 218

    [21]

    Zhang B W, Ouyang Y F 1993 Phys. Rev. B 48 3022

    [22]

    Hu W Y, Zhang B W, Shu X L, Huang B Y 1999 J. Alloys Compd. 287 159

    [23]

    Barrett C S, Massalski T B 1980 Structure of Metals (Pergamon Press: Oxford)

    [24]

    Kittle C, 1976 Introduction to Solid State Physics (Wiley: New York)

    [25]

    Johnson R A 1989 Phys. Rev. B 39 12554

    [26]

    Gray D E 1972 American Institute of Physics Handbook, Mcgraw-Hill Book Company: New York

    [27]

    Foils S M, Baskes M I, Daw M S 1986 Phys. Rev. B 33 7983

    [28]

    Deng H Q, Hu W Y, Shu X L 2001 Acta Metall. Sin. 37 467 (in Chinese)[邓辉球、 胡望宇、 舒小林 2001 金属学报37 467]

    [29]

    Wang Y, Song Z X, Xu K W 2007 Acta Phys. Sin. 56 7248 (in Chinese)[汪 渊、 宋忠孝、 许可为 2007 物理学报 56 7248]

    [30]

    Bai P, Yang G P, Lu T M 1990 Appl. Phys. Lett. 56 198

    [31]

    Wong C C, Smith H I, Thompson C V 1986 Appl. Phys. Lett. 48 335

    [32]

    Zhang J M, Xu K W 2003 Acta Phys. Sin. 52 0145 (in Chinese)[张建民、 许可为 2003 物理学报 52 0145]

    [33]

    Zhang J M, Xu K W 2002 Acta Phys. Sin. 51 2562 (in Chinese)[张建民、许可为 2002 物理学报 51 2562]

    [34]

    Pan J L, Ni J 2006 Acta Phys. Sin. 55 0413 (in Chinese)[潘江陵、 倪 军 2006 物理学报 55 0413]

  • [1]

    Hasson G, Boos Y, Iherbeuval J 1972 Surf. Sci. 31 115

    [2]

    Figuera J, Carter C B, Bartelt N C 2003 Surf. Sci. 531 29238

    [3]

    Wang X M, Shang C J, Yang S W 2005 Acta Metall. Sin. 41 1256 (in Chinese)[王学敏、 尚成嘉、 杨善武 2005 金属学报 41 1256]

    [4]

    Finnis M W, Sinclair J E 1984 Philos. Mag. A 50 45

    [5]

    Deurinck P D, Creemers C 1998 Surf. Sci. 419 62

    [6]

    Zhang C, Tang X, Wang Y L, Zhang Q Y 2005 Acta Phys. Sin. 54 5791 (in Chinese)[张 超、 唐 鑫、 王永亮、 张庆瑜 2005 物理学报 54 5791]

    [7]

    He J H, Carosella C A, Hubler G K, Qadri S B, Sprague J A 2006 Phys. Rev. B 73 235406

    [8]

    Fritschea L, Kollerb J 2003 J. Solid State Chem. 176 652

    [9]

    Geng W T 2003 Phys. Rev. B 68 233402

    [10]

    Skriver H L, Rosengaard N M 1992 Phys. Rev. B 46 7157

    [11]

    Zhang B W, Hu W Y, Shu X L 2002 Theory of Embedded Atom Method and Its Application to Materials Science (Changsha: Hunan University Press) (in Chinese)[张邦维、 胡望宇、 舒小林 2002 嵌入原子方法理论及其在材料科学中的应用(长沙:湖南大学出版社)]

    [12]

    Ma F, Zhang J M, Xu K W 2004 Surf. Interface Anal. 36 355

    [13]

    Zhang J M, Xin H, Wei X M 2005 Acta Phys. Sin. 54 237 (in Chinese)[张建民、 辛 红、 魏秀梅 2005 物理学报 54 237]

    [14]

    Zhang J M, Wei X M, Xin H 2005 Appl. Surf. Sci. 243 1

    [15]

    Zhang J M, Huang Y H, Wu X J, Xu K W 2006 Appl. Surf. Sci. 252 4936

    [16]

    Shu Y, Zhang J M, Xu K W 2006 Acta Phys. Sin. 55 4103 (in Chinese) [舒 瑜、 张建民、 徐可为 2006 物理学报 55 4103]

    [17]

    Zhang J M, Song X L, Zhang X J, Xu K W, Ji V 2006 Surf. Sci. 600 1277

    [18]

    Zhang J M, Song X L, Zhang X J, Xu K W 2006 J. Phys. Chem. Solids. 67 7

    [19]

    Hamilton J C 1979 Phys. Rev. Lett. 42 989

    [20]

    Zhang B W, Ouyang Y F, Liao S Z, Jin Z P 1999 Phys. B 26 218

    [21]

    Zhang B W, Ouyang Y F 1993 Phys. Rev. B 48 3022

    [22]

    Hu W Y, Zhang B W, Shu X L, Huang B Y 1999 J. Alloys Compd. 287 159

    [23]

    Barrett C S, Massalski T B 1980 Structure of Metals (Pergamon Press: Oxford)

    [24]

    Kittle C, 1976 Introduction to Solid State Physics (Wiley: New York)

    [25]

    Johnson R A 1989 Phys. Rev. B 39 12554

    [26]

    Gray D E 1972 American Institute of Physics Handbook, Mcgraw-Hill Book Company: New York

    [27]

    Foils S M, Baskes M I, Daw M S 1986 Phys. Rev. B 33 7983

    [28]

    Deng H Q, Hu W Y, Shu X L 2001 Acta Metall. Sin. 37 467 (in Chinese)[邓辉球、 胡望宇、 舒小林 2001 金属学报37 467]

    [29]

    Wang Y, Song Z X, Xu K W 2007 Acta Phys. Sin. 56 7248 (in Chinese)[汪 渊、 宋忠孝、 许可为 2007 物理学报 56 7248]

    [30]

    Bai P, Yang G P, Lu T M 1990 Appl. Phys. Lett. 56 198

    [31]

    Wong C C, Smith H I, Thompson C V 1986 Appl. Phys. Lett. 48 335

    [32]

    Zhang J M, Xu K W 2003 Acta Phys. Sin. 52 0145 (in Chinese)[张建民、 许可为 2003 物理学报 52 0145]

    [33]

    Zhang J M, Xu K W 2002 Acta Phys. Sin. 51 2562 (in Chinese)[张建民、许可为 2002 物理学报 51 2562]

    [34]

    Pan J L, Ni J 2006 Acta Phys. Sin. 55 0413 (in Chinese)[潘江陵、 倪 军 2006 物理学报 55 0413]

  • [1] Liu Jian-Cai, Zhang Xin-Ming, Chen Ming-An, Tang Jian-Guo, Liu Sheng-Dan. Simulation of surface segregation of in to Al(001) surface. Acta Physica Sinica, 2010, 59(8): 5641-5645. doi: 10.7498/aps.59.5641
    [2] Zhang Hui, Zhang Guo-Ying, Wang Dan, Yang Shuang, He Jun-Qi. The influence of impurities on segregation of the (110) surface of O/RhxPt1-x alloy system. Acta Physica Sinica, 2008, 57(3): 1846-1850. doi: 10.7498/aps.57.1846
    [3] Zhang Hui, Zhang Guo-Ying, Li Xing, Liu Shi-Yang. The chemisorption of CO on a disordered binary alloy (NixCu1-x) and the mutual influence of chemisorption and surface segregation. Acta Physica Sinica, 2004, 53(9): 3152-3156. doi: 10.7498/aps.53.3152
    [4] Zhang Chao, Tang Xin, Wang Yong-Liang, Zhang Qing-Yu. Study on the influence of substitutional impurity on the stability of noble metal (111) surfaces by molecular dynamics simulation. Acta Physica Sinica, 2005, 54(12): 5791-5796. doi: 10.7498/aps.54.5791
    [5] Fa Tao, Chen Tian-Xiang, Han Lu-Hui, Mo Chuan. Surface segregation of AuCu3 by He+ and Au+ irradiation. Acta Physica Sinica, 2016, 65(3): 038201. doi: 10.7498/aps.65.038201
    [6] Ma Fei, Zhang Jian-Min, Xu Ke-Wei. Calculation of surface energy of Cu crystal with modified embedded-atom method. Acta Physica Sinica, 2003, 52(8): 1993-1999. doi: 10.7498/aps.52.1993
    [7] Huang Jin, Sun Qi-Cheng. Experimental study and analysis of energy evolution of liquid foam drainage in one dimension. Acta Physica Sinica, 2007, 56(10): 6124-6131. doi: 10.7498/aps.56.6124
    [8] Xiao Hong-Xing, Long Chong-Sheng. Molecular dynamics simulation of surface energy of low miller index surfaces in UO2. Acta Physica Sinica, 2013, 62(10): 103104. doi: 10.7498/aps.62.103104
    [9] Chen Lu, Li Ye-Fei, Zheng Qiao-Ling, Liu Qing-Kun, Gao Yi-Min, Li Bo, Zhou Chang-Meng. Theoretical study of atomic relaxation, surface energy, electronic structure and properties of B2- and B19'-NiTi surfaces. Acta Physica Sinica, 2019, 68(5): 053101. doi: 10.7498/aps.68.20181944
    [10] Liu Hong. Surface energy of the biaxial nematic liquid crystal. Acta Physica Sinica, 2002, 51(12): 2786-2792. doi: 10.7498/aps.51.2786
  • Citation:
Metrics
  • Abstract views:  5604
  • PDF Downloads:  1061
  • Cited By: 0
Publishing process
  • Received Date:  06 January 2009
  • Accepted Date:  27 April 2010
  • Published Online:  15 January 2011

Anisotropy analysis of surface energy and prediction of surface segregation for fcc metals

  • 1. (1)College of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China; (2)College of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China;Key Laboratory of Ecophysics, Shihezi University, Shihezi 832003, China; (3)Headmaster's office, Shihezi University, Shihezi 832003, China; (4)Key Laboratory of Ecophysics, Shihezi University, Shihezi 832003, China; (5)State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University,

Abstract: In the atomic scale, the surface energy anisotropy analysis of 38 surface planes of 10 fcc metals Cu, Ag, Au, Ni, Pd, Pt, Rh, Al, Ir and Pb have been simulated by using the elemental variables φ* and nWS and modified analytical embedded-atom method (MAEAM). The results show that the close-packed surface (111) of fcc metals which have the lowest surface energies will grow preferentially, the surface energies for all the other surface planes increase linearly with cosθ(hkl), where cosθ(hkl) are the angles between the surface planes (hkl) and (111), which is consistent with the experimental and the linear-muffin-tin-orbital atomic-sphere approximation (LMTO-ASA) results. A graphical approach which correctly explains the relation of the surface segregation energy and surface energy is employed. We conclude that the surface segregation takes place or not is mainly determined by the rule that an impurity (solute) with lower surface energy will segregate to the surface of the host (solution) with higher surface energy.

Reference (34)

Catalog

    /

    返回文章
    返回