Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Model of electron mobility in inversion layer of strained Si/Si1-xGex n type metal-oxide-semiconductor field-effect transistors

Li Bin Liu Hong-Xia Yuan Bo Li Jin Lu Feng-Ming

Model of electron mobility in inversion layer of strained Si/Si1-xGex n type metal-oxide-semiconductor field-effect transistors

Li Bin, Liu Hong-Xia, Yuan Bo, Li Jin, Lu Feng-Ming
PDF
Get Citation
  • In order to describe the electron mobility enhancement in inversion layer in strained-Si on Si1-xGex n type metal-oxide-semiconductor field-effect transistors (nMOSFETs), a new physically-based electron mobility model is presented in the paper. This model can not only show the dependence of acoustic phonon-limited mobility and surface roughness-limited mobility on transverse electrical field normal to the semiconductor-insulator interface, but also explains the electron mobility enhancement mechanism due to scattering suppression caused by germanium (Ge) content. The expression of the new model is simple and can simulate the mobility for any Ge content. Numerical analysis results show that this model fits the reported experimental data very well. In addition, this model can be easily included in the device simulator ISE and gives good agreement with simulated results of device simulator with built-in model.
    • Funds:
    [1]

    Vogelsang T, Hofman K R 1993 Appl. Phys. Lett. 63 186

    [2]

    Zhang Z F, Zhang H M, Hu H Y, Xuan R Y, Song J J 2009 Acta Phys. Sin. 58 4948 (in Chinese) [张志锋、 张鹤鸣、 胡辉勇、 宣荣喜、 宋建军 2009 物理学报 58 4948]

    [3]

    Song J J, Zhang H M, Hu H Y, Dai X Y, Xuan R X 2007 Chin. Phys. 16 3827

    [4]

    Leitz C W, Currie M T, Lee M L, Cheng Z Y 2002 J. Appl. Phys. 92 3745

    [5]

    Fitzgerald E A, Xie Y H, Green M L, Brasen D, Kortan A R 1991 Appl. Phys. Lett. 59 811

    [6]

    Welser J, Hoyt J L, Gibbons J F 1994 IEEE Electron Devices Lett. 15 100

    [7]

    Miyata H, Yamada T, Ferry D K 1993 Appl. Phys. Lett. 62 2661

    [8]

    Cheng B F, Yao F, Xue C L, Zhang J G, Li C B, Mao R Y, Zuo Y H, Luo L P, Wang Q M 2005 Acta Phys. Sin. 54 4350 (in Chinese) [成步飞、 姚 飞、 薛春来、 张建国、 李传波、 毛容伟、 左玉华、 罗丽萍、 王启明 2005 物理学报 54 4350]

    [9]

    Lin G J, Lai H K, Li C, Chen S Y, Yu J Z 2008 Chin. Phys. B 17 3479

    [10]

    Lombardi C, Manzini S, Saporito A, Vanzi M 1988 IEEE Transactions on Computer-Aided Design 7 1164

    [11]

    Darwish M N, Lentz J L, Pinto M R, Zeitzoff P M, Krutick T J, Vuong H H 1997 IEEE Trans. Electron Devices 44 1529

    [12]

    Liang R R, Li D B, Xu J 2008 Solid-State Electronics 52 863

    [13]

    Masetti G, Severi M, Solmi S 1983 IEEE Trans. Electron Devices 30 764

    [14]

    Sah C T, Ning T H, Tschopp L L 1972 Surface Sci. 32 561

    [15]

    Schwarz S A, Russek S 1983 IEEE Trans. Electron Devices 30 1634

    [16]

    Currie M T, Leitz C W, Langdo T A, Taraschi G, Eitzgerald E A, Antoniadis D A 2001 J. Vac. Sci. Technol. B 19 2268

    [17]

    Kim S J, Shim T H, Choi K R, Park J G 2009 Semi. Sci. Tech. 24 035014.1

    [18]

    Roldán J B, Gámiz F 2004 Solid-State Electronics 48 1347

    [19]

    Sun S C, Plummer J D 1980 IEEE Trans. Electron Devices 27 1497

  • [1]

    Vogelsang T, Hofman K R 1993 Appl. Phys. Lett. 63 186

    [2]

    Zhang Z F, Zhang H M, Hu H Y, Xuan R Y, Song J J 2009 Acta Phys. Sin. 58 4948 (in Chinese) [张志锋、 张鹤鸣、 胡辉勇、 宣荣喜、 宋建军 2009 物理学报 58 4948]

    [3]

    Song J J, Zhang H M, Hu H Y, Dai X Y, Xuan R X 2007 Chin. Phys. 16 3827

    [4]

    Leitz C W, Currie M T, Lee M L, Cheng Z Y 2002 J. Appl. Phys. 92 3745

    [5]

    Fitzgerald E A, Xie Y H, Green M L, Brasen D, Kortan A R 1991 Appl. Phys. Lett. 59 811

    [6]

    Welser J, Hoyt J L, Gibbons J F 1994 IEEE Electron Devices Lett. 15 100

    [7]

    Miyata H, Yamada T, Ferry D K 1993 Appl. Phys. Lett. 62 2661

    [8]

    Cheng B F, Yao F, Xue C L, Zhang J G, Li C B, Mao R Y, Zuo Y H, Luo L P, Wang Q M 2005 Acta Phys. Sin. 54 4350 (in Chinese) [成步飞、 姚 飞、 薛春来、 张建国、 李传波、 毛容伟、 左玉华、 罗丽萍、 王启明 2005 物理学报 54 4350]

    [9]

    Lin G J, Lai H K, Li C, Chen S Y, Yu J Z 2008 Chin. Phys. B 17 3479

    [10]

    Lombardi C, Manzini S, Saporito A, Vanzi M 1988 IEEE Transactions on Computer-Aided Design 7 1164

    [11]

    Darwish M N, Lentz J L, Pinto M R, Zeitzoff P M, Krutick T J, Vuong H H 1997 IEEE Trans. Electron Devices 44 1529

    [12]

    Liang R R, Li D B, Xu J 2008 Solid-State Electronics 52 863

    [13]

    Masetti G, Severi M, Solmi S 1983 IEEE Trans. Electron Devices 30 764

    [14]

    Sah C T, Ning T H, Tschopp L L 1972 Surface Sci. 32 561

    [15]

    Schwarz S A, Russek S 1983 IEEE Trans. Electron Devices 30 1634

    [16]

    Currie M T, Leitz C W, Langdo T A, Taraschi G, Eitzgerald E A, Antoniadis D A 2001 J. Vac. Sci. Technol. B 19 2268

    [17]

    Kim S J, Shim T H, Choi K R, Park J G 2009 Semi. Sci. Tech. 24 035014.1

    [18]

    Roldán J B, Gámiz F 2004 Solid-State Electronics 48 1347

    [19]

    Sun S C, Plummer J D 1980 IEEE Trans. Electron Devices 27 1497

  • [1] Song Jian-Jun, Bao Wen-Tao, Zhang Jing, Tang Zhao-Huan, Tan Kai-Zhou, Cui Wei, Hu Hui-Yong, Zhang He-Ming. Double ellipsoid model for conductivity effective mass along [110] orientation in (100) Si-based strained p-channel metal-oxide-semiconductor. Acta Physica Sinica, 2016, 65(1): 018501. doi: 10.7498/aps.65.018501
    [2] Zhang He-Ming, Song Jian-Jun, Ma Jian-Li, Wang Guan-Yu, An Jiu-Hua, Wang Xiao-Yan. Electron mobility of strained Si/(001)Si1- x Ge x . Acta Physica Sinica, 2011, 60(7): 077205. doi: 10.7498/aps.60.077205
    [3] Zhang Zhi-Feng, Zhang He-Ming, Hu Hui-Yong, Xuan Rong-Xi, Song Jian-Jun. Threshold voltage model of strained Si channel nMOSFET. Acta Physica Sinica, 2009, 58(7): 4948-4952. doi: 10.7498/aps.58.4948
    [4] Ma Ji-Gang, Ma Xiao-Hua, Zhang Hui-Long, Cao Meng-Yi, Zhang Kai, Li Wen-Wen, Guo Xing, Liao Xue-Yang, Chen Wei-Wei, Hao Yue. A semiempirical model for kink effect on the AlGaN/GaN high electron mobility transistor. Acta Physica Sinica, 2012, 61(4): 047301. doi: 10.7498/aps.61.047301
    [5] The physics-based model of AlGaN/GaN high electron mobility transistor outer fringing capacitances. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191931
    [6] Zhang He-Ming, Hu Hui-Yong, Dai Xian-Ying, Xuan Rong-Xi, Cui Xiao-Ying. Study on threshold voltage model of strained SiGe quantum well channel SOI PMOSFET. Acta Physica Sinica, 2007, 56(6): 3504-3508. doi: 10.7498/aps.56.3504
    [7] Wu Hua-Ying, Zhang He-Ming, Song Jian-Jun, Hu Hui-Yong. An model of tunneling gate current for uniaxially strained Si nMOSFET. Acta Physica Sinica, 2011, 60(9): 097302. doi: 10.7498/aps.60.097302
    [8] Ma Zhong-Fa, Zhuang Yi-Qi, Du Lei, Bao Jun-Lin, Li Wei-Hua. A physical-based percolation model for gate oxide TDDB. Acta Physica Sinica, 2003, 52(8): 2046-2051. doi: 10.7498/aps.52.2046
    [9] LIU HONG-XIA, FANG JIAN-PING, HAO YUE. EXPERIMENTAL ANALYSIS AND PHYSICAL MODEL INVESTIGATION OF TDDB OF THIN GATE OXIDE. Acta Physica Sinica, 2001, 50(6): 1172-1177. doi: 10.7498/aps.50.1172
    [10] Dai Yue-Hua, Chen Jun-Ning, Ke Dao-Ming, Sun Jia-E. An analytical model of MOSFET threshold voltage with considiring the quantum effects. Acta Physica Sinica, 2005, 54(2): 897-901. doi: 10.7498/aps.54.897
  • Citation:
Metrics
  • Abstract views:  3509
  • PDF Downloads:  654
  • Cited By: 0
Publishing process
  • Received Date:  02 April 2010
  • Accepted Date:  09 April 2010
  • Published Online:  15 January 2011

Model of electron mobility in inversion layer of strained Si/Si1-xGex n type metal-oxide-semiconductor field-effect transistors

  • 1. Key Laboratory for Wide Band Gap Semiconductor Materials and Devices of Education, School of Microelectronics, Xidian University, Xi'an 710071, China

Abstract: In order to describe the electron mobility enhancement in inversion layer in strained-Si on Si1-xGex n type metal-oxide-semiconductor field-effect transistors (nMOSFETs), a new physically-based electron mobility model is presented in the paper. This model can not only show the dependence of acoustic phonon-limited mobility and surface roughness-limited mobility on transverse electrical field normal to the semiconductor-insulator interface, but also explains the electron mobility enhancement mechanism due to scattering suppression caused by germanium (Ge) content. The expression of the new model is simple and can simulate the mobility for any Ge content. Numerical analysis results show that this model fits the reported experimental data very well. In addition, this model can be easily included in the device simulator ISE and gives good agreement with simulated results of device simulator with built-in model.

Reference (19)

Catalog

    /

    返回文章
    返回