Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Parametric properties of the electron spin relaxation due to spin-orbit interaction in InAs quantum dots

Jiang Hong-Liang Zhang Rong-Jun Zhou Hong-Ming Yao Duan-Zheng Xiong Gui-Guang

Parametric properties of the electron spin relaxation due to spin-orbit interaction in InAs quantum dots

Jiang Hong-Liang, Zhang Rong-Jun, Zhou Hong-Ming, Yao Duan-Zheng, Xiong Gui-Guang
PDF
Get Citation
  • To deal with the Hamiltonian model in InAs QDs with a single electron, we’ve taken the SO interaction as a perturbation term, calculated the SO matrix elements under Fock-Darwin eigenfunction which are used for second order corrections on the energies and wave functions, and considered the influence of new energy levels on g factor and effective mass m*. The expression of phonon-assisted electron spin relaxation rate Γ in InAs QDs is deduced, which shows different dependences on confined potential frequency ω0, temperature T, vertical height z0 and magnetic field B. Among them, temperature for the electron spin relaxation plays a dominant role, followed by lateral confinement potential frequency, magnetic field and the vertical height, in order of importance. (1) Growth of ω0, which corresponds to the decrease of the effective transverse size d in InAs QDs, suppresses the increase of the rate Γ. (2) The temperature T affects the rate Γ evidently, which will reduce the inhibition of ω0 on Γ. With increase of the temperature from 1 K to 7 K, the spin inversion relaxation rate grows explosively from 103 s-1 to 108 s-1. (3) The rate Γ decreases with the growth of the vertical height z0 and have the order of magnitude 100-103 s-1 at T=1 K, whereas the influence of the temperature increase (at T=6 K) on the rate will gradually exceed that of the height growth. (4) At different frequencies ω0 all curves of the rate Γ versus magnetic field B have a peak that almost appears at the same field, which is attributed to the contribution of the Zeeman term H ^ Z exceeding that of H ^ SO since there is a considerable g factor in InAs material.
    • Funds:
    [1]

    Datta S, Das B 1990 Appl. Phys. Lett. 56 665

    [2]

    Loss D, DiVincenzo D P 1998 Phys. Rev. A 57 120

    [3]

    Kouwenhoven L P, Elzerman J M, Hanson R, Willems van Beveren L H, Vandersypen L M K 2006 Phys. Status Solidi B 243 3682

    [4]

    Lee S, Dobrowolska M, Furdyna J K 2006 J. App. Phys. 99 08F702

    [5]

    Liao Y Y, Chen Y N, Chuu D S, Brandes T 2006 Phys. Rev. B 73 085310

    [6]

    Li D F, Shi J R 2009 Chin. Phys. B 18 282

    [7]

    Wu Y, Jiao Z X, Lei L, Wen J H, Lai T S, Lin W Z 2006 Acta Phys. Sin. 55 2961 (in Chinese) [吴 羽、 焦中兴、 雷 亮、 文锦辉、 赖天树、 林位株 2006 物理学报 55 2961]

    [8]

    Rugar D, Budakian R, Mamin H J, Chui B W 2004 Nature 430 329

    [9]

    Elzerman J M, Hanson R, Willems van Beveren L H, Witkamp B, Vandersypen L M K, Kouwenhoven L P 2004 Nature 430 431

    [10]

    Hanson R, Witkamp B, Vandersypen L M K, Willems van Beveren L H, Elzerman J M, Kouwenhoven L P 2003 Phys. Rev. Lett. 91 196802

    [11]

    Pfund A, Shorubalko I, Ensslin K, Leturcq R 2009 Phys. Rev. B 79 121306

    [12]

    utic ' I, Fabian J, Sarma S D 2004 Rev. Mod. Phys. 76 323

    [13]

    Cheng J L, Wu M W, Lü C 2004 Phys. Rev. B 69 115318

    [14]

    Reimann S M, Manninen M 2002 Rev. Mod. Phys. 74 1283

    [15]

    Destefani C F, Ulloa Sergio E, Marques G E 2004 Phys. Rev. B 70 205315

    [16]

    Winkler R 2003 Spin-orbit coupling effects in two-dimensional electron and hole systems (Berlin: Springer) p69

    [17]

    Bulaev D V, Loss D 2005 Phys. Rev. B 71 205324

    [18]

    Olendski O, Shahbazyan T V 2007 Phys. Rev. B 75 041306(4)

    [19]

    Golovach V N, Khaetskii A, Loss D 2004 Phys. Rev. Lett. 93 016601

  • [1]

    Datta S, Das B 1990 Appl. Phys. Lett. 56 665

    [2]

    Loss D, DiVincenzo D P 1998 Phys. Rev. A 57 120

    [3]

    Kouwenhoven L P, Elzerman J M, Hanson R, Willems van Beveren L H, Vandersypen L M K 2006 Phys. Status Solidi B 243 3682

    [4]

    Lee S, Dobrowolska M, Furdyna J K 2006 J. App. Phys. 99 08F702

    [5]

    Liao Y Y, Chen Y N, Chuu D S, Brandes T 2006 Phys. Rev. B 73 085310

    [6]

    Li D F, Shi J R 2009 Chin. Phys. B 18 282

    [7]

    Wu Y, Jiao Z X, Lei L, Wen J H, Lai T S, Lin W Z 2006 Acta Phys. Sin. 55 2961 (in Chinese) [吴 羽、 焦中兴、 雷 亮、 文锦辉、 赖天树、 林位株 2006 物理学报 55 2961]

    [8]

    Rugar D, Budakian R, Mamin H J, Chui B W 2004 Nature 430 329

    [9]

    Elzerman J M, Hanson R, Willems van Beveren L H, Witkamp B, Vandersypen L M K, Kouwenhoven L P 2004 Nature 430 431

    [10]

    Hanson R, Witkamp B, Vandersypen L M K, Willems van Beveren L H, Elzerman J M, Kouwenhoven L P 2003 Phys. Rev. Lett. 91 196802

    [11]

    Pfund A, Shorubalko I, Ensslin K, Leturcq R 2009 Phys. Rev. B 79 121306

    [12]

    utic ' I, Fabian J, Sarma S D 2004 Rev. Mod. Phys. 76 323

    [13]

    Cheng J L, Wu M W, Lü C 2004 Phys. Rev. B 69 115318

    [14]

    Reimann S M, Manninen M 2002 Rev. Mod. Phys. 74 1283

    [15]

    Destefani C F, Ulloa Sergio E, Marques G E 2004 Phys. Rev. B 70 205315

    [16]

    Winkler R 2003 Spin-orbit coupling effects in two-dimensional electron and hole systems (Berlin: Springer) p69

    [17]

    Bulaev D V, Loss D 2005 Phys. Rev. B 71 205324

    [18]

    Olendski O, Shahbazyan T V 2007 Phys. Rev. B 75 041306(4)

    [19]

    Golovach V N, Khaetskii A, Loss D 2004 Phys. Rev. Lett. 93 016601

  • [1] Li Wen-Sheng, Sun Bao-Quan. Optical transition of the charged excitons in InAs single quantum dots. Acta Physica Sinica, 2013, 62(4): 047801. doi: 10.7498/aps.62.047801
    [2] Wang Hong-Pei, Wang Guang-Long, Yu Ying, Xu Ying-Qiang, Ni Hai-Qiao, Niu Zhi-Chuan, Gao Feng-Qi. Properties of δ doped GaAs/AlxGa1-xAs 2DEG with embedded InAs quantum dots. Acta Physica Sinica, 2013, 62(20): 207303. doi: 10.7498/aps.62.207303
    [3] SHI JIAN-ZHONG, SHAO QING-YI, ZHU KAI-GUI. RAMAN SCATTERING FROM InAs NANOCRYSTALS EMBEDDED IN SiO2 THIN FILMS. Acta Physica Sinica, 2000, 49(11): 2304-2306. doi: 10.7498/aps.49.2304
    [4] Zhu Meng-Long, Dong Yu-Lan, Zhong Hai-Zheng, He Jun. Exciton spin relaxation dynamics in CdTe quantum dots at room temperature. Acta Physica Sinica, 2014, 63(12): 127202. doi: 10.7498/aps.63.127202
    [5] Bai Xu-Fang, Wuyunqimuge, Xin Wei, Eerdunchaolu. Study of the properties of strong-coupling magnetopolaron in quantum disks induced by the Rashba spin-orbit interaction. Acta Physica Sinica, 2014, 63(17): 177803. doi: 10.7498/aps.63.177803
    [6] Wu Yu, Jiao Zhong-Xing, Lei Liang, Wen Jin-Hui, Lai Tian-Shu, Lin Wei-Zhu. Electron spin relaxation and momentum relaxation in semiconductor quantum wells. Acta Physica Sinica, 2006, 55(6): 2961-2965. doi: 10.7498/aps.55.2961
    [7] MA BEN-KUN. SPIN-LATTICE RELAXATION. Acta Physica Sinica, 1965, 123(7): 1419-1436. doi: 10.7498/aps.21.1419
    [8] Yi Xu-Nong, Li Ying, Ling Xiao-Hui, Zhang Zhi-You, Fan Dian-Yuan. Spin-orbit interaction of light in metasuface. Acta Physica Sinica, 2015, 64(24): 244202. doi: 10.7498/aps.64.244202
    [9] Liu Shao-Ding, Cheng Mu-Tian, Wang Xia, Wang Qu-Quan. The influence of spin relaxation on the entanglement of photon pairs emitted from degenerate exciton quantum dot system. Acta Physica Sinica, 2007, 56(8): 4924-4929. doi: 10.7498/aps.56.4924
    [10] Wang Qi-Wen, Hong Lan. Polaron spin relaxation in a two-dimensional quantum dot. Acta Physica Sinica, 2012, 61(1): 017107. doi: 10.7498/aps.61.017107
  • Citation:
Metrics
  • Abstract views:  3105
  • PDF Downloads:  675
  • Cited By: 0
Publishing process
  • Received Date:  31 December 2009
  • Accepted Date:  05 May 2010
  • Published Online:  15 January 2011

Parametric properties of the electron spin relaxation due to spin-orbit interaction in InAs quantum dots

  • 1. (1)Basic Department, The Jinling Institute of Technology, Nanjing 211169, China;Department of Physics, Wuhan University, Wuhan 430072, China; (2)Department of Physics, Wuhan University, Wuhan 430072, China

Abstract: To deal with the Hamiltonian model in InAs QDs with a single electron, we’ve taken the SO interaction as a perturbation term, calculated the SO matrix elements under Fock-Darwin eigenfunction which are used for second order corrections on the energies and wave functions, and considered the influence of new energy levels on g factor and effective mass m*. The expression of phonon-assisted electron spin relaxation rate Γ in InAs QDs is deduced, which shows different dependences on confined potential frequency ω0, temperature T, vertical height z0 and magnetic field B. Among them, temperature for the electron spin relaxation plays a dominant role, followed by lateral confinement potential frequency, magnetic field and the vertical height, in order of importance. (1) Growth of ω0, which corresponds to the decrease of the effective transverse size d in InAs QDs, suppresses the increase of the rate Γ. (2) The temperature T affects the rate Γ evidently, which will reduce the inhibition of ω0 on Γ. With increase of the temperature from 1 K to 7 K, the spin inversion relaxation rate grows explosively from 103 s-1 to 108 s-1. (3) The rate Γ decreases with the growth of the vertical height z0 and have the order of magnitude 100-103 s-1 at T=1 K, whereas the influence of the temperature increase (at T=6 K) on the rate will gradually exceed that of the height growth. (4) At different frequencies ω0 all curves of the rate Γ versus magnetic field B have a peak that almost appears at the same field, which is attributed to the contribution of the Zeeman term H ^ Z exceeding that of H ^ SO since there is a considerable g factor in InAs material.

Reference (19)

Catalog

    /

    返回文章
    返回