Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Geometric structure and electronic transport property of single alkanemonothiol molecule junction: external force effect and terminal group effect

Hu Wei Li Zong-Liang Ma Yong Wang Chuan-Kui Li Ying-De

Geometric structure and electronic transport property of single alkanemonothiol molecule junction: external force effect and terminal group effect

Hu Wei, Li Zong-Liang, Ma Yong, Wang Chuan-Kui, Li Ying-De
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The hybrid density functional theory is used to study formation of the junction of alkanemonothiol molecules with different terminal groups. The relationship between geometric structures of the molecular junction and the external force is obtained. On the basis of the relationship, the electronic transport properties of the molecular junctions under different external forces are investigated using the elastic-scattering Green’s function method. The results show that the C11S molecular junction is broken when the distance of the two electrodes is larger than 2.1 nm. While for C11SOH and C10SCOOH molecular junctions, their critical distances are similarly 2.15 nm. Taking the same external force, we find that the C11S molecule has the largest conducting ability, and the C10SCOOH molecule has the smallest conducting ability. Furthermore, the conductance of the three molecular junctions is monotonically enhanced with the increase of the external force. The numerical results are consistent with the experimental findings qualitatively.
    • Funds:
    [1]

    Tao N J 2006 Nat. Nanotechnol. 1 173

    [2]

    Thijssen W H A, Djukic D, Otte A F, Bremmer R H, van Ruitenbeek J M 2006 Phys. Rev. Lett. 97 226806

    [3]

    Djukic D, Thygesen K S, Untiedt C, Smit R H M, Jacobsen K W, van Ruitenbeek J M 2005 Phys. Rev. B 71 161402

    [4]

    Jeremy M B, Moore H J, Lee TR,Kushmerick J G 2007 Nano Lett. 7 1364

    [5]

    Cui X D, Primak A, Zarate X, Tomfohr J, Sankey O F, Moore A L, Moore T A, Gust D, Harris G, Lindsay S M 2001 Science 294 571

    [6]

    Dadosh T, Gordin Y, Krahne R, Khivrich I, Mahalu D, Frydman V, Sperling J, Yacoby A, Israel B J 2005 Nature 436 677

    [7]

    Hu H L, Zhang K, Wang Z X, Wang X P 2006 Acta Phys. Sin. 55 1430 (in Chinese)[胡海龙、 张 琨、 王振兴、 王晓平 2006 物理学报 55 1430]

    [8]

    Hu H L, Zhang K, Wang Z X, Kong T, Hu Y, Wang X P 2007 Acta Phys. Sin. 56 1674(in Chinese)[胡海龙、 张 琨、 王振兴、 孔 涛、 胡 颖、 王晓平 2007 物理学报 56 1674]

    [9]

    Wang L G, Chen L, Yu D W, Li Y, Terence K S W 2007 Acta Phys. Sin. 56 6526 (in Chinese)[王利光、 陈 蕾、 郁鼎文、 李 勇、Terence K. S. W. 2007 物理学报 56 6526]

    [10]

    Chen Z J, Huang K, Long Y Z, Wan M X, Yin Z H 2009 Chin. Phys. B 18 298

    [11]

    Tian X Y, Xu X R, Xu Z, Yuan G C, Zhang F J, Zhao S L 2009 Chin. Phys. B 18 3568

    [12]

    Li Z L, Zou B, Yan X W, Wang C K 2007 Chin. Phys. 16 1434

    [13]

    Xia C J, Fang C F, Hu G C, Li D M, Liu D S, Xie S J, Zhao M W 2008 Acta Phys. Sin. 57 3148 (in Chinese)[夏蔡娟、 房常峰、 胡贵超、 李冬梅、 刘德胜、 解士杰、 赵明文 2008 物理学报 57 3148]

    [14]

    Chen Y J, Zhao R G, Yang W S 2005 Acta Phys. Sin. 54 284 (in Chinese)[陈永军、 赵汝光、 杨威生 2005 物理学报 54 284]

    [15]

    Venkataraman L, Klare J E, Tam I W, Nuckolis C, Hybertsen M S,Steigerwald M L 2006 Nano Lett. 6 458

    [16]

    Chen F, Li X, Hihath J, Huang Z, Tao N J 2006 J. Am. Chem.Soc. 128 15874

    [17]

    Hihath J, Tao N J 2008 Nanotechnology 19 265204

    [18]

    Li C, Pobelov I, Wandlowski T, Bagrets A, Arnold A, Evers F 2008 J. Am. Chem. Soc. 130 318

    [19]

    Li X, He J, Hihath J, Xu B, Lindsay S M, Tao N J 2006 J. Am. Chem. Soc. 128 2135

    [20]

    González M T, Wu S, Huber R, van der Molen S J, Schnenberger C, Calame M 2006 Nano Lett. 6 2238

    [21]

    Ulrich J, Esrail D, Pontius W, Venkataraman L, Millar D, Doerrer L H 2006 J. Phys. Chem. B 110 2462

    [22]

    Hybertsen M S, Venkataraman L, Klare J E, Whalley A C, Steigerwald M L, Nuckolls C 2008 J. Phys.: Condens. Matter 20 374115

    [23]

    Li X, He J, Hihath J, Xu B, Lindsay S M, Tao N J 2006 J. Am. Chem. Soc. 128 2135

    [24]

    Li H H, Li Y D, Wang C K 2002 Acta Phys. Sin. 51 1239 (in Chinese)[李红海、 李英德、 王传奎 2002 物理学报 51 1239]

    [25]

    Cui X D, Zarate X, Tomfohr J, Sankey O F, Primak A, Moore A L, Moore T A, Gust D, Harris G, Lindsay S M 2002 Nanotechnology 13 5

    [26]

    Qiu M, Zhang Z H 2010 Acta Phys. Sin. 59 4162 (in Chinese)[邱 明、 张振华 2010 物理学报 59 4162]

    [27]

    Park Y S, Whalley A C, Kamenetska M, Steigerwald M L, Hybertsen M S, Nuckolls C, Venkataraman L 2007 J. Am. Chem. Soc. 129 15768

    [28]

    Wang C K, Fu Y, Luo Y 2001 Phys. Chem. Chem. Phys. 3 5017

    [29]

    Frisch M J, Trucks G N, Schlegel H B 2003 Gaussian 03, Revision D.1, Gaussian, Inc., Pittsburgh, PA

    [30]

    Jiang J, Wang C K, Luo Y 2005 QCME-V1.0 (Quantum Chemistry for Molecular Electronics), Royal Institute of Technology, Sweden

  • [1]

    Tao N J 2006 Nat. Nanotechnol. 1 173

    [2]

    Thijssen W H A, Djukic D, Otte A F, Bremmer R H, van Ruitenbeek J M 2006 Phys. Rev. Lett. 97 226806

    [3]

    Djukic D, Thygesen K S, Untiedt C, Smit R H M, Jacobsen K W, van Ruitenbeek J M 2005 Phys. Rev. B 71 161402

    [4]

    Jeremy M B, Moore H J, Lee TR,Kushmerick J G 2007 Nano Lett. 7 1364

    [5]

    Cui X D, Primak A, Zarate X, Tomfohr J, Sankey O F, Moore A L, Moore T A, Gust D, Harris G, Lindsay S M 2001 Science 294 571

    [6]

    Dadosh T, Gordin Y, Krahne R, Khivrich I, Mahalu D, Frydman V, Sperling J, Yacoby A, Israel B J 2005 Nature 436 677

    [7]

    Hu H L, Zhang K, Wang Z X, Wang X P 2006 Acta Phys. Sin. 55 1430 (in Chinese)[胡海龙、 张 琨、 王振兴、 王晓平 2006 物理学报 55 1430]

    [8]

    Hu H L, Zhang K, Wang Z X, Kong T, Hu Y, Wang X P 2007 Acta Phys. Sin. 56 1674(in Chinese)[胡海龙、 张 琨、 王振兴、 孔 涛、 胡 颖、 王晓平 2007 物理学报 56 1674]

    [9]

    Wang L G, Chen L, Yu D W, Li Y, Terence K S W 2007 Acta Phys. Sin. 56 6526 (in Chinese)[王利光、 陈 蕾、 郁鼎文、 李 勇、Terence K. S. W. 2007 物理学报 56 6526]

    [10]

    Chen Z J, Huang K, Long Y Z, Wan M X, Yin Z H 2009 Chin. Phys. B 18 298

    [11]

    Tian X Y, Xu X R, Xu Z, Yuan G C, Zhang F J, Zhao S L 2009 Chin. Phys. B 18 3568

    [12]

    Li Z L, Zou B, Yan X W, Wang C K 2007 Chin. Phys. 16 1434

    [13]

    Xia C J, Fang C F, Hu G C, Li D M, Liu D S, Xie S J, Zhao M W 2008 Acta Phys. Sin. 57 3148 (in Chinese)[夏蔡娟、 房常峰、 胡贵超、 李冬梅、 刘德胜、 解士杰、 赵明文 2008 物理学报 57 3148]

    [14]

    Chen Y J, Zhao R G, Yang W S 2005 Acta Phys. Sin. 54 284 (in Chinese)[陈永军、 赵汝光、 杨威生 2005 物理学报 54 284]

    [15]

    Venkataraman L, Klare J E, Tam I W, Nuckolis C, Hybertsen M S,Steigerwald M L 2006 Nano Lett. 6 458

    [16]

    Chen F, Li X, Hihath J, Huang Z, Tao N J 2006 J. Am. Chem.Soc. 128 15874

    [17]

    Hihath J, Tao N J 2008 Nanotechnology 19 265204

    [18]

    Li C, Pobelov I, Wandlowski T, Bagrets A, Arnold A, Evers F 2008 J. Am. Chem. Soc. 130 318

    [19]

    Li X, He J, Hihath J, Xu B, Lindsay S M, Tao N J 2006 J. Am. Chem. Soc. 128 2135

    [20]

    González M T, Wu S, Huber R, van der Molen S J, Schnenberger C, Calame M 2006 Nano Lett. 6 2238

    [21]

    Ulrich J, Esrail D, Pontius W, Venkataraman L, Millar D, Doerrer L H 2006 J. Phys. Chem. B 110 2462

    [22]

    Hybertsen M S, Venkataraman L, Klare J E, Whalley A C, Steigerwald M L, Nuckolls C 2008 J. Phys.: Condens. Matter 20 374115

    [23]

    Li X, He J, Hihath J, Xu B, Lindsay S M, Tao N J 2006 J. Am. Chem. Soc. 128 2135

    [24]

    Li H H, Li Y D, Wang C K 2002 Acta Phys. Sin. 51 1239 (in Chinese)[李红海、 李英德、 王传奎 2002 物理学报 51 1239]

    [25]

    Cui X D, Zarate X, Tomfohr J, Sankey O F, Primak A, Moore A L, Moore T A, Gust D, Harris G, Lindsay S M 2002 Nanotechnology 13 5

    [26]

    Qiu M, Zhang Z H 2010 Acta Phys. Sin. 59 4162 (in Chinese)[邱 明、 张振华 2010 物理学报 59 4162]

    [27]

    Park Y S, Whalley A C, Kamenetska M, Steigerwald M L, Hybertsen M S, Nuckolls C, Venkataraman L 2007 J. Am. Chem. Soc. 129 15768

    [28]

    Wang C K, Fu Y, Luo Y 2001 Phys. Chem. Chem. Phys. 3 5017

    [29]

    Frisch M J, Trucks G N, Schlegel H B 2003 Gaussian 03, Revision D.1, Gaussian, Inc., Pittsburgh, PA

    [30]

    Jiang J, Wang C K, Luo Y 2005 QCME-V1.0 (Quantum Chemistry for Molecular Electronics), Royal Institute of Technology, Sweden

  • [1] Hu Hai-Long, Zhang Kun, Wang Zhen-Xing, Kong Tao, Wang Xiao-Ping, Hu Ying. The effect of terminal group on the electronic transport property of alkanethiol self-assembled monolayer. Acta Physica Sinica, 2007, 56(3): 1674-1679. doi: 10.7498/aps.56.1674
    [2] Liu Ran, Bao De-Liang, Jiao Yang, Wan Ling-Wen, Li Zong-Liang, Wang Chuan-Kui. Study on force sencitivity of electronic transport properties of 1,4-butanedithiol molecular device. Acta Physica Sinica, 2014, 63(6): 068501. doi: 10.7498/aps.63.068501
    [3] Sui Yu, Song Xiu-Dan, Wang Xian-Jie, Cheng Jin-Guang, Qian Zheng-Nan, Su Wen-Hui, Nie Ying. Influence of the compacting pressure on the transport properties of CrO2 at low temperatures. Acta Physica Sinica, 2006, 55(6): 3038-3042. doi: 10.7498/aps.55.3038
    [4] Na Yuan-Yuan, Wang Cong, Chu Li-Hua, Ding Lei, Yan Jun. Study on electronic transport and magnetic properties for antiperovskite Mn3CuNx thin films fabricated with different N2 flow rates. Acta Physica Sinica, 2012, 61(3): 036801. doi: 10.7498/aps.61.036801
    [5] Hu Ni, Xie Hui, Wang Li-Li, Lin Ying, Xiong Rui, Yu Zu-Xing, Tang Wu-Feng, Shi Jing. B-site Fe doping effect on the structure and electronic transport properties of quasi-one-dimensional spin ladder compound Sr14(Cu1-yFey)24O41. Acta Physica Sinica, 2006, 55(7): 3480-3487. doi: 10.7498/aps.55.3480
    [6] Zhou Ding-Bang, Liu Xin-Dian, Li Zhi-Qing. Electrical transport properties of polycrystalline TaN1- films. Acta Physica Sinica, 2015, 64(19): 197302. doi: 10.7498/aps.64.197302
    [7] Shi Wen-Jun, Yi Ying-Yan, Li Min. Pressure dependence of refractive index of Ge near the absorption edge. Acta Physica Sinica, 2016, 65(16): 167801. doi: 10.7498/aps.65.167801
    [8] Ban Shi-Liang, Zhang Min. Stark effect of donor impurity states in strained heterojunctions under pressure. Acta Physica Sinica, 2008, 57(7): 4459-4465. doi: 10.7498/aps.57.4459
    [9] Wang Li-Li, Peng Jian-Xiang, Jing Fu-Qian, Li Da-Hong. Pressure and temperature dependence of shear modulus and yield strength for aluminum, copper and tungsten under shock compression. Acta Physica Sinica, 2005, 54(5): 2194-2197. doi: 10.7498/aps.54.2194
    [10] Cao Ya-Nan, Wang Gui-Shi, Tan Tu, Wang Lei, Mei Jiao-Xu, Cai Ting-Dong, Gao Xiao-Ming. Concentration and pressure measurement of water vapor in sealed glass containers based on tunable diode laser absorption spectroscopy. Acta Physica Sinica, 2016, 65(8): 084202. doi: 10.7498/aps.65.084202
    [11] Li Shi-Chun, Chen Gen-Yu, Zhou Cong, Chen Xiao-Feng, Zhou Yu. Plasma inside and outside keyhole during 10 kW level fiber laser welding. Acta Physica Sinica, 2014, 63(10): 104212. doi: 10.7498/aps.63.104212
    [12] Hu Ni, Xiong Rui, Wei Wei, Wang Zi-Yu, Wang Li-Li, Yu Zu-Xing, Tang Wu-Feng, Shi Jing. Raman scattering study of the spin ladder compound Sr14(Cu1-yFey)24O41. Acta Physica Sinica, 2008, 57(8): 5267-5271. doi: 10.7498/aps.57.5267
    [13] Sun Feng, Liu Ran, Suo Yu-Qing, Niu Le-Le, Fu Huan-Yan, Ji Wen-Fang, Li Zong-Liang. First principle study on stretching and breaking process of single-molecule junction: Terminal group effect. Acta Physica Sinica, 2019, 68(17): 178502. doi: 10.7498/aps.68.20190693
    [14] Hu Hai-Long, Zhang Kun, Wang Zhen-Xing, Wang Xiao-Ping. Study of the transport properties of self-assembled alkanethiol monolayer by conduction atomic force microscopy. Acta Physica Sinica, 2006, 55(3): 1430-1434. doi: 10.7498/aps.55.1430
    [15] Xin Jian-Guo, Yang Chuan-Lu, Wang Mei-Shan, Ma Xiao-Guang. Electronic transport properties of oligo phenylene ethynylene molecule modified by the (CH3)2 and (NH2)2 groups. Acta Physica Sinica, 2016, 65(7): 073102. doi: 10.7498/aps.65.073102
    [16] ZHAO YOU-XIANG, LIU SHI-CHAO, YU LI-ZHI. THE EFFECT OF HYDROSTATIC PRESSURE ON THE TRANSPORT PROPERTIES OF InSb. Acta Physica Sinica, 1966, 22(1): 83-93. doi: 10.7498/aps.22.83
    [17] Lin Xiao-Na, Zhang Guang-Ping, Ren Jun-Feng, Yuan Xiao-Bo, Hu Gui-Chao. Electronic transport properties of oligophenyleneethynylene molecular junctions in alkaline and acid solutions. Acta Physica Sinica, 2014, 63(6): 068502. doi: 10.7498/aps.63.068502
    [18] ZHU ZAI-WAN, XU JI-AN. METALLIC HYDROGEN——TRANSITION PRESSURES AND PHYSICAL PROPERTIES. Acta Physica Sinica, 1979, 28(6): 865-871. doi: 10.7498/aps.28.865
    [19] Zhu Lu-Yao, Wang Peng, Zhai Chun-Guang, Hu Kuo, Yao Ming-Guang, Liu Bing-Bing. Effect of pressure on structure and fluorescence of phthalocyanine. Acta Physica Sinica, 2019, 68(17): 176101. doi: 10.7498/aps.68.20190559
    [20] Zhang Zhao-Hui, Yu Xiao-Dong, Li Hai-Peng, Han Kui. Effect of alkane chain length on tribological properties of straight chain alkane liquid film. Acta Physica Sinica, 2019, 68(22): 228101. doi: 10.7498/aps.68.20190740
  • Citation:
Metrics
  • Abstract views:  3967
  • PDF Downloads:  678
  • Cited By: 0
Publishing process
  • Received Date:  01 March 2010
  • Accepted Date:  11 May 2010
  • Published Online:  15 January 2011

Geometric structure and electronic transport property of single alkanemonothiol molecule junction: external force effect and terminal group effect

  • 1. (1)College of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (2)College of Physics and Electronics, Shandong Normal University, Jinan 250014, China;College of Physics and Electronics, Weifang University, Weifang 261061, China

Abstract: The hybrid density functional theory is used to study formation of the junction of alkanemonothiol molecules with different terminal groups. The relationship between geometric structures of the molecular junction and the external force is obtained. On the basis of the relationship, the electronic transport properties of the molecular junctions under different external forces are investigated using the elastic-scattering Green’s function method. The results show that the C11S molecular junction is broken when the distance of the two electrodes is larger than 2.1 nm. While for C11SOH and C10SCOOH molecular junctions, their critical distances are similarly 2.15 nm. Taking the same external force, we find that the C11S molecule has the largest conducting ability, and the C10SCOOH molecule has the smallest conducting ability. Furthermore, the conductance of the three molecular junctions is monotonically enhanced with the increase of the external force. The numerical results are consistent with the experimental findings qualitatively.

Reference (30)

Catalog

    /

    返回文章
    返回