Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Density functional study on chirospectra of bruguierols

Mang Chao-Yong Gou Gao-Zhang Liu Cai-Ping Wu Ke-Chen

Density functional study on chirospectra of bruguierols

Mang Chao-Yong, Gou Gao-Zhang, Liu Cai-Ping, Wu Ke-Chen
PDF
Get Citation
  • The theoretical investigation of the chiral optics is induive to the elucidation of the optically rotational mechanism and the design of the novel chiral drugs. The optical rotation (OR), the vibrational circular dichroism (VCD),and the electronic circular dichroism (ECD) spectra of a series of newly-found bio-active molecules, bruguierols A—C, are calculated with the gradient-corrected density functional theory method. On the basis of molecular structure, normally vibrational modes and electronic structure, we explore the microscopic origin of molecular chirality and discuss the solvent effects of OR and ECD spectra. The results show that the introduction of OH modulates the molecular chirality. The methyl group and the phenyl group enhance the molecular chirality. The normal vibrations and the electronic transitions on the chiral skeleton play critical roles in producing the chiral spectra. The solvent effect decreases OR and weakens the ECD spectra.
    • Funds:
    [1]

    Han L, Huang X, Sattler I, Moellmann U, Lin W, Grabley S 2005Planta Med. 71 160

    [2]

    Ramana C V, Salian S R, Gonnade R G 2007 Eur. J. Org. Chem. 5483

    [3]

    Solorio D M, Jennings M P 2007 J. Org. Chem. 72 6621

    [4]

    Wu J Z, Zhen Z B, Zhang Y H, Wu Y K 2008 Acta Chim. Sin. 66 2138 (in Chinese). [吴建忠、甄志彬、张奕华、伍贻康 2008 化学学报 66 2138]

    [5]

    Francisco J F, Amadeo F, Deniz C, Felix R 2009 J. Org. Chem. 74 932

    [6]

    Parr R G, Yang W 1989 Density-functional theory of atoms and molecules (Oxford Univ. Press, Oxford)

    [7]

    Freedman T B, Cao X, Oliveira R V, Cass Q B, Nafie L A 2003 Chirality 15 196

    [8]

    Aamouche A, Devlin F J, Stephens P J, Drabowicz J, Bujnicki B, Mikolajczyk M 2000 Chem. Eur. J. 6 4479

    [9]

    Stephens P J, Devlin E J, Schurch S, Hulliger J 2008 Theor. Chem. Account 119 19

    [10]

    Bauernschmitt R, Ahlrichs R 1996 Chem. Phys. Lett. 256 454

    [11]

    Casida M E, Jamorski C, Casida K C, Salahub D R 1998 J. Chem. Phys. 108 4439

    [12]

    Stratmann R E, Scuseria G E, Frisch M J 1998 J. Chem. Phys. 109 8218

    [13]

    Helgaker T, Jrgensen P 1991 J. Chem. Phys. 95 2595

    [14]

    Bak K L, Jrgensen P, Helgaker T, Ruud K, Jensen H J A 1993 J. Chem. Phys. 98 8873

    [15]

    Autschbach J, Ziegler T, van Gisbergen S J A, Baerends E J 2002 J. Chem. Phys. 116 6930

    [16]

    Becke A D 1988 Phys. Rev. A 38 3098

    [17]

    Lee B, Yang W, Parr R G 1988 Phys. Rev. B 37 785

    [18]

    Ditchfield R, Hehre W J, Pople J A 1971 J. Chem. Phys. 54 724

    [19]

    Hehre W J, Ditchfield R, Pople J A 1972 J. Chem. Phys. 56 2257

    [20]

    McLean A D, Chandler G S 1980 J. Chem. Phys. 72 5639

    [21]

    Krishnan R, Binkley J S, Seeger R, Pople J A 1980 J. Chem. Phys. 72 650

    [22]

    Miertus S, Scrocco E, Tomasi J 1981 Chem. Phys. 55 117

    [23]

    Mennucci B, Tomasi J 1997 J. Chem. Phys. 106 5151

    [24]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Vreven Jr T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A 2003 Gaussian 03 (Revision B.05) Gaussian Inc., Pittsburgh P A

    [25]

    McWeeny R 1962 Phys. Rev. 126 1028

    [26]

    Wolinski K, Hilton J F, Pulay P 1990 J. Am. Chem. Soc. 112 8251

    [27]

    Stephens P J, Lowe M A 1985 Annu. Rev. Phys. Chem. 36 213

    [28]

    Moscowitz A 1962 Adv. Chem. Phys. 4 67

    [29]

    SImonato J P, Pecaut J, Marchon J C 1998 J. Am. Chem. Soc. 120 7363

    [30]

    Toronto D, Aarrazin F, Pecaut J, Marchon J C, Shang M, Scheidt W R 1998 Inorg. Chem. 37 526

    [31]

    Mang C Y, Zhao X, Liu C P, Wu K C 2008 Acta Chim. Sin. 66 195 (in Chinese) [莽朝永、赵 霞、刘彩萍 吴克琛 2008 化学学报66 195]

    [32]

    Mang C Y, Li Z G, Wu K C 2010 Chin. Phys. B 19 043601

    [33]

    Yang G C, Wang L, Yang G Z 2003 Chin. Phys. 12 1096

    [34]

    Chen L J, Yao B L, Han J H, Gao P, Chen Y, Wang Y L, Lei M 2008 Acta Phys. Sin 57 5571 (in Chinese) [陈利菊、姚保利、韩俊鹤、郜 鹏、陈 懿、王英利、雷 铭 2008 物理学报57 5571]

  • [1]

    Han L, Huang X, Sattler I, Moellmann U, Lin W, Grabley S 2005Planta Med. 71 160

    [2]

    Ramana C V, Salian S R, Gonnade R G 2007 Eur. J. Org. Chem. 5483

    [3]

    Solorio D M, Jennings M P 2007 J. Org. Chem. 72 6621

    [4]

    Wu J Z, Zhen Z B, Zhang Y H, Wu Y K 2008 Acta Chim. Sin. 66 2138 (in Chinese). [吴建忠、甄志彬、张奕华、伍贻康 2008 化学学报 66 2138]

    [5]

    Francisco J F, Amadeo F, Deniz C, Felix R 2009 J. Org. Chem. 74 932

    [6]

    Parr R G, Yang W 1989 Density-functional theory of atoms and molecules (Oxford Univ. Press, Oxford)

    [7]

    Freedman T B, Cao X, Oliveira R V, Cass Q B, Nafie L A 2003 Chirality 15 196

    [8]

    Aamouche A, Devlin F J, Stephens P J, Drabowicz J, Bujnicki B, Mikolajczyk M 2000 Chem. Eur. J. 6 4479

    [9]

    Stephens P J, Devlin E J, Schurch S, Hulliger J 2008 Theor. Chem. Account 119 19

    [10]

    Bauernschmitt R, Ahlrichs R 1996 Chem. Phys. Lett. 256 454

    [11]

    Casida M E, Jamorski C, Casida K C, Salahub D R 1998 J. Chem. Phys. 108 4439

    [12]

    Stratmann R E, Scuseria G E, Frisch M J 1998 J. Chem. Phys. 109 8218

    [13]

    Helgaker T, Jrgensen P 1991 J. Chem. Phys. 95 2595

    [14]

    Bak K L, Jrgensen P, Helgaker T, Ruud K, Jensen H J A 1993 J. Chem. Phys. 98 8873

    [15]

    Autschbach J, Ziegler T, van Gisbergen S J A, Baerends E J 2002 J. Chem. Phys. 116 6930

    [16]

    Becke A D 1988 Phys. Rev. A 38 3098

    [17]

    Lee B, Yang W, Parr R G 1988 Phys. Rev. B 37 785

    [18]

    Ditchfield R, Hehre W J, Pople J A 1971 J. Chem. Phys. 54 724

    [19]

    Hehre W J, Ditchfield R, Pople J A 1972 J. Chem. Phys. 56 2257

    [20]

    McLean A D, Chandler G S 1980 J. Chem. Phys. 72 5639

    [21]

    Krishnan R, Binkley J S, Seeger R, Pople J A 1980 J. Chem. Phys. 72 650

    [22]

    Miertus S, Scrocco E, Tomasi J 1981 Chem. Phys. 55 117

    [23]

    Mennucci B, Tomasi J 1997 J. Chem. Phys. 106 5151

    [24]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Vreven Jr T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A 2003 Gaussian 03 (Revision B.05) Gaussian Inc., Pittsburgh P A

    [25]

    McWeeny R 1962 Phys. Rev. 126 1028

    [26]

    Wolinski K, Hilton J F, Pulay P 1990 J. Am. Chem. Soc. 112 8251

    [27]

    Stephens P J, Lowe M A 1985 Annu. Rev. Phys. Chem. 36 213

    [28]

    Moscowitz A 1962 Adv. Chem. Phys. 4 67

    [29]

    SImonato J P, Pecaut J, Marchon J C 1998 J. Am. Chem. Soc. 120 7363

    [30]

    Toronto D, Aarrazin F, Pecaut J, Marchon J C, Shang M, Scheidt W R 1998 Inorg. Chem. 37 526

    [31]

    Mang C Y, Zhao X, Liu C P, Wu K C 2008 Acta Chim. Sin. 66 195 (in Chinese) [莽朝永、赵 霞、刘彩萍 吴克琛 2008 化学学报66 195]

    [32]

    Mang C Y, Li Z G, Wu K C 2010 Chin. Phys. B 19 043601

    [33]

    Yang G C, Wang L, Yang G Z 2003 Chin. Phys. 12 1096

    [34]

    Chen L J, Yao B L, Han J H, Gao P, Chen Y, Wang Y L, Lei M 2008 Acta Phys. Sin 57 5571 (in Chinese) [陈利菊、姚保利、韩俊鹤、郜 鹏、陈 懿、王英利、雷 铭 2008 物理学报57 5571]

  • [1] Dong Zheng-Qiong, Zhao Hang, Zhu Jin-Long, Shi Ya-Ting. Influence of incident illumination on optical scattering measurement of typical photoresist nanostructure. Acta Physica Sinica, 2020, 69(3): 030601. doi: 10.7498/aps.69.20191525
    [2] Zuo Fu-Chang, Mei Zhi-Wu, Deng Lou-Lou, Shi Yong-Qiang, He Ying-Bo, Li Lian-Sheng, Zhou Hao, Xie Jun, Zhang Hai-Li, Sun Yan. Development and in-orbit performance evaluation of multi-layered nested grazing incidence optics. Acta Physica Sinica, 2020, 69(3): 030702. doi: 10.7498/aps.69.20191446
    [3] Hu Yao-Hua, Liu Yan, Mu Ge, Qin Qi, Tan Zhong-Wei, Wang Mu-Guang, Yan Feng-Ping. Application of compressive sensing based on multimode fiber specklegram in optical image encryption. Acta Physica Sinica, 2020, 69(3): 034203. doi: 10.7498/aps.69.20191143
    [4] Preparing GaN nanowires on Al2O3 substrate without catalyst and its optical property research. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191923
    [5] The spring oscillator model degenerated into the coupled-mode theory by using secular perturbation theory. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191505
    [6] The influence of the secondary electron emission characteristic of dielectric materials on the microwave breakdown. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200026
    [7] Guo Hui, Wang Ya-Jun, Wang Lin-Xue, Zhang Xiao-Fei. Dynamics of ring dark solitons in Bose-Einstein condensates. Acta Physica Sinica, 2020, 69(1): 010302. doi: 10.7498/aps.69.20191424
    [8] Anisotropic Dissipation in a Dipolar Bose-Einstein Condensate. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200025
    [9] Bai Jia-Hao, Guo Jian-Gang. Theoretical studies on bidirectional interfacial shear stress transfer of graphene/flexible substrate composite structure. Acta Physica Sinica, 2020, 69(5): 056201. doi: 10.7498/aps.69.20191730
    [10] Wu Yu-Ming, Ding Xiao, Wang Ren, Wang Bing-Zhong. Theoretical analysis of wide-angle metamaterial absorbers based on equivalent medium theory. Acta Physica Sinica, 2020, 69(5): 054202. doi: 10.7498/aps.69.20191732
    [11] Jian Jun, Lei Jiao, Fan Qun-Chao, Fan Zhi-Xiang, Ma Jie, Fu Jia, Li Hui-Dong, Xu Yong-Gen. Theoreticalstudy on thermodynamicproperties of NO gas. Acta Physica Sinica, 2020, 69(5): 053301. doi: 10.7498/aps.69.20191723
    [12] Identifying two different configurations of the H32+ by the direct above-threshold ionization spectrum in two-color laser field. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200013
    [13] Huang Yong-Feng, Cao Huai-Xin, Wang Wen-Hua. Conjugate linear symmetry and its application to \begin{document}$ {\mathcal{P}}{\mathcal{T}} $\end{document}-symmetry quantum theory. Acta Physica Sinica, 2020, 69(3): 030301. doi: 10.7498/aps.69.20191173
    [14] Zhang Ya-Nan, Zhan Nan, Deng Ling-Ling, Chen Shu-Fen. Efficiency improvement in solution-processed multilayered phosphorescent white organic light emitting diodes by silica coated silver nanocubes. Acta Physica Sinica, 2020, 69(4): 047801. doi: 10.7498/aps.69.20191526
  • Citation:
Metrics
  • Abstract views:  3015
  • PDF Downloads:  655
  • Cited By: 0
Publishing process
  • Received Date:  26 May 2010
  • Accepted Date:  13 July 2010
  • Published Online:  15 April 2011

Density functional study on chirospectra of bruguierols

  • 1. (1)Institute of Eastern-Himalaya Biodiversity Research, College of Life Science and Chemistry, Dali University, Dali 671000,China; (2)State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002,China

Abstract: The theoretical investigation of the chiral optics is induive to the elucidation of the optically rotational mechanism and the design of the novel chiral drugs. The optical rotation (OR), the vibrational circular dichroism (VCD),and the electronic circular dichroism (ECD) spectra of a series of newly-found bio-active molecules, bruguierols A—C, are calculated with the gradient-corrected density functional theory method. On the basis of molecular structure, normally vibrational modes and electronic structure, we explore the microscopic origin of molecular chirality and discuss the solvent effects of OR and ECD spectra. The results show that the introduction of OH modulates the molecular chirality. The methyl group and the phenyl group enhance the molecular chirality. The normal vibrations and the electronic transitions on the chiral skeleton play critical roles in producing the chiral spectra. The solvent effect decreases OR and weakens the ECD spectra.

Reference (34)

Catalog

    /

    返回文章
    返回