Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of doping concentration in p+ deep well on charge sharing in 90nm CMOS technology

Liu Fan-Yu Liu Heng-Zhu Liu Bi-Wei Liang Bin Chen Jian-Jun

Effect of doping concentration in p+ deep well on charge sharing in 90nm CMOS technology

Liu Fan-Yu, Liu Heng-Zhu, Liu Bi-Wei, Liang Bin, Chen Jian-Jun
PDF
Get Citation
  • This paper deals with the effect of doping concentration in p+ deep well on charge sharing in 90nm dual well CMOS technology. TCAD simulation results show doping concentration in p+ deep well has a more significant effect on charge sharing in PMOS tube than in NMOS tube. By increasing doping concentration of p+ deep well appropriately, the charge sharing in PMOS can be restrained effectively, which is useful for reinforcing the charge sharing.
    • Funds:
    [1]

    Jderström H, Murin Y, Babain Y, Chubarov M, Pljuschev V, Zubkov M, Nomokonov P, Olsson N, Blomgren J, Tippawan U, Westerberg L, Golubev P, Jakobsson B, Gerén L, Tegnér P E, Zartova I, Budzanowski A, Czech B, Skwirczynska I, Kondratiev V, Tang H H K, Aichelin J, Watanabe Y, Gudima K K 2008 Phys. Rev. C 77 2813

    [2]

    Dodd P E, Massengill L W 2003 IEEE Trans. Nucl. Sci. 50 583

    [3]

    Levinson J, Akkerman A, Victoria M, Hass M, Ilberg D, Alurralde M, Henneck R, Lifshitz Y 1993 Appl. Phys. Lett. 63 2952

    [4]

    Cellere G, Paccagnella A, Visconti A, Bonanomi M 2004 Appl. Phys. Lett. 85 485

    [5]

    Schrimpf R D, Weller R A, Marcus H M, Reed R A, Massengill L W 2007 Nucl. Instr. and Meth. B 261 1133

    [6]

    Zhang K Y, Guo H X, Luo Y H, He B P, Yao Z B, Zhang F Q, Wang Y M 2009 Acta Phys. Sin. 58 8651(in Chinese) [张科营、郭红霞、罗尹虹、何宝平、姚志斌、张凤祁、王园明 2009 物理学报 58 8651]

    [7]

    Liu Z, Chen S M, Liang B, Liu B W, Zhao Z Y 2010 Acta Phys. Sin. 59 649(in Chinese) [刘 征、陈书明、梁 斌、刘必慰、赵振宇 2010 物理学报 59 649]

    [8]

    Olson B D, Ball D R, Warren K M, Massengill L W, Haddad N F, Doyle S E, McMorrow D 2005 IEEE Trans. Nucl. Sci. 52 2132

    [9]

    Massengill L W, Amusan O A, Dasgupta S, Sternberg A L, Black J D, Witulski A F, Bhuva B L, Alles M L 2007 International Conference on Integrated Circuit Design and Technology 213—216

    [10]

    Amusan O A, Casey M C, Bhuva B L, McMorrow D, Gadlage M J, Melinger J S, Massengill L W 2009 IEEE Trans. Nucl. Sci. 56 3065

    [11]

    Liu B W, Chen S M, Liang B, Liu Z, Zhao Z Y 2009 IEEE Trans. Nucl. Sci. 56 2473

    [12]

    Amusan O A, Witulski A F, Massengill L W, Bhuva B L, Fleming P R, Alles M L, Sternberg A L, Black J D, Schrimpf R D 2006 IEEE Trans. Nucl. Sci. 53 3253

    [13]

    Saxena P K, Bhat N 2003 Solid State Electronics 47 661

    [14]

    Hsu S, Fiez T S, Mayaram K 2005 IEEE Trans. Elec. Dev 52 1880

    [15]

    Synopsys Corporation 2009 Sentaurus Device User Guide Version A-2009.06-SP2.

    [16]

    Emery F E, Rabson T A 1965 Phys. Rev. 140 2089

    [17]

    Dussault H, Howard J W, Block R C, Pinto M R, Stapor W J, Knudson A R 1993 IEEE Trans. Nucl. Sci. 40 1926

    [18]

    Dodd P E, Sexton F W, Winokur P S 1994 IEEE Trans. Nucl. Sci. 41 2005

    [19]

    Hsieh C M, Murley P C, O’Brien R R 1981 IEEE Elec. Dev. Lett. EDL-2 103

    [20]

    Amusan O A, Massengill L W, Baze M P, Bhuva B L, Witulski A F, Black J D, Balasubramanian A, Casey M C, Black D A, Ahlbin J R, Reed R A, McCurdy M W 2009 IEEE Transaction on Device and Materials Reliabilty 9 311

  • [1]

    Jderström H, Murin Y, Babain Y, Chubarov M, Pljuschev V, Zubkov M, Nomokonov P, Olsson N, Blomgren J, Tippawan U, Westerberg L, Golubev P, Jakobsson B, Gerén L, Tegnér P E, Zartova I, Budzanowski A, Czech B, Skwirczynska I, Kondratiev V, Tang H H K, Aichelin J, Watanabe Y, Gudima K K 2008 Phys. Rev. C 77 2813

    [2]

    Dodd P E, Massengill L W 2003 IEEE Trans. Nucl. Sci. 50 583

    [3]

    Levinson J, Akkerman A, Victoria M, Hass M, Ilberg D, Alurralde M, Henneck R, Lifshitz Y 1993 Appl. Phys. Lett. 63 2952

    [4]

    Cellere G, Paccagnella A, Visconti A, Bonanomi M 2004 Appl. Phys. Lett. 85 485

    [5]

    Schrimpf R D, Weller R A, Marcus H M, Reed R A, Massengill L W 2007 Nucl. Instr. and Meth. B 261 1133

    [6]

    Zhang K Y, Guo H X, Luo Y H, He B P, Yao Z B, Zhang F Q, Wang Y M 2009 Acta Phys. Sin. 58 8651(in Chinese) [张科营、郭红霞、罗尹虹、何宝平、姚志斌、张凤祁、王园明 2009 物理学报 58 8651]

    [7]

    Liu Z, Chen S M, Liang B, Liu B W, Zhao Z Y 2010 Acta Phys. Sin. 59 649(in Chinese) [刘 征、陈书明、梁 斌、刘必慰、赵振宇 2010 物理学报 59 649]

    [8]

    Olson B D, Ball D R, Warren K M, Massengill L W, Haddad N F, Doyle S E, McMorrow D 2005 IEEE Trans. Nucl. Sci. 52 2132

    [9]

    Massengill L W, Amusan O A, Dasgupta S, Sternberg A L, Black J D, Witulski A F, Bhuva B L, Alles M L 2007 International Conference on Integrated Circuit Design and Technology 213—216

    [10]

    Amusan O A, Casey M C, Bhuva B L, McMorrow D, Gadlage M J, Melinger J S, Massengill L W 2009 IEEE Trans. Nucl. Sci. 56 3065

    [11]

    Liu B W, Chen S M, Liang B, Liu Z, Zhao Z Y 2009 IEEE Trans. Nucl. Sci. 56 2473

    [12]

    Amusan O A, Witulski A F, Massengill L W, Bhuva B L, Fleming P R, Alles M L, Sternberg A L, Black J D, Schrimpf R D 2006 IEEE Trans. Nucl. Sci. 53 3253

    [13]

    Saxena P K, Bhat N 2003 Solid State Electronics 47 661

    [14]

    Hsu S, Fiez T S, Mayaram K 2005 IEEE Trans. Elec. Dev 52 1880

    [15]

    Synopsys Corporation 2009 Sentaurus Device User Guide Version A-2009.06-SP2.

    [16]

    Emery F E, Rabson T A 1965 Phys. Rev. 140 2089

    [17]

    Dussault H, Howard J W, Block R C, Pinto M R, Stapor W J, Knudson A R 1993 IEEE Trans. Nucl. Sci. 40 1926

    [18]

    Dodd P E, Sexton F W, Winokur P S 1994 IEEE Trans. Nucl. Sci. 41 2005

    [19]

    Hsieh C M, Murley P C, O’Brien R R 1981 IEEE Elec. Dev. Lett. EDL-2 103

    [20]

    Amusan O A, Massengill L W, Baze M P, Bhuva B L, Witulski A F, Black J D, Balasubramanian A, Casey M C, Black D A, Ahlbin J R, Reed R A, McCurdy M W 2009 IEEE Transaction on Device and Materials Reliabilty 9 311

  • [1] Investigate the effect of source-drain conduction in single-event transient on nanoscale bulk fin field effect transistor. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191896
    [2] Zhang Meng, Yao Ruo-He, Liu Yu-Rong. A channel thermal noise model of nanoscaled metal-oxide-semiconductor field-effect transistor. Acta Physica Sinica, 2020, 69(5): 057101. doi: 10.7498/aps.69.20191512
    [3] Zhang Zhan-Gang, Lei Zhi-Feng, Tong Teng, Li Xiao-Hui, Wang Song-Lin, Liang Tian-Jiao, Xi Kai, Peng Chao, He Yu-Juan, Huang Yun, En Yun-Fei. Comparison of neutron induced single event upsets in 14 nm FinFET and 65 nm planar static random access memory devices. Acta Physica Sinica, 2020, 69(5): 056101. doi: 10.7498/aps.69.20191209
    [4] Zhu Xiao-Li, Hu Yao-Gai, Zhao Zheng-Yu, Zhang Yuan-Nong. Comparison between ionospheric disturbances caused by barium and cesium. Acta Physica Sinica, 2020, 69(2): 029401. doi: 10.7498/aps.69.20191266
    [5] Liang Jin-Jie, Gao Ning, Li Yu-Hong. Surface effect on \begin{document}${\langle 100 \rangle }$\end{document} interstitial dislocation loop in iron. Acta Physica Sinica, 2020, 69(3): 036101. doi: 10.7498/aps.69.20191379
    [6] Measurement of Magnetically Insensitive State Coherent Time in Blue Dipole Trap. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20192001
    [7] Huang Yong-Feng, Cao Huai-Xin, Wang Wen-Hua. Conjugate linear symmetry and its application to \begin{document}$ {\mathcal{P}}{\mathcal{T}} $\end{document}-symmetry quantum theory. Acta Physica Sinica, 2020, 69(3): 030301. doi: 10.7498/aps.69.20191173
    [8] Zhang Ya-Nan, Zhan Nan, Deng Ling-Ling, Chen Shu-Fen. Efficiency improvement in solution-processed multilayered phosphorescent white organic light emitting diodes by silica coated silver nanocubes. Acta Physica Sinica, 2020, 69(4): 047801. doi: 10.7498/aps.69.20191526
  • Citation:
Metrics
  • Abstract views:  3836
  • PDF Downloads:  840
  • Cited By: 0
Publishing process
  • Received Date:  15 April 2010
  • Accepted Date:  24 July 2010
  • Published Online:  15 April 2011

Effect of doping concentration in p+ deep well on charge sharing in 90nm CMOS technology

  • 1. Computer School, National University of Defense Technology, Changsha 410073,China

Abstract: This paper deals with the effect of doping concentration in p+ deep well on charge sharing in 90nm dual well CMOS technology. TCAD simulation results show doping concentration in p+ deep well has a more significant effect on charge sharing in PMOS tube than in NMOS tube. By increasing doping concentration of p+ deep well appropriately, the charge sharing in PMOS can be restrained effectively, which is useful for reinforcing the charge sharing.

Reference (20)

Catalog

    /

    返回文章
    返回