Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Investigation of V-type photonic crystal fiber with high birefringence

Xia Chang-Ming Han Ying Liu Zhao-Lun Hou Lan-Tian Zhou Gui-Yao

Investigation of V-type photonic crystal fiber with high birefringence

Xia Chang-Ming, Han Ying, Liu Zhao-Lun, Hou Lan-Tian, Zhou Gui-Yao
PDF
Get Citation
  • According to the full-vector finite element method, a new kind of V-shape photonic crystal fiber with high birefringence is proposed. Simulation results show that the V-shape photonic crystal fiber has a birefringence of 1.239×10-2 at a wavelength of 1.55 μm, when its cladding air hole pitch, large air hole diameter, small air hole diameter are 1.0 μm, 0.95 μm and 0.6 μm, respectively. There are two zero dispersion wavelengths in the visible and the near-infrared region respectively, and the abnormal dispersion zone includes the operation wavelength of Ti:sapphire laser, which is advantageous for nonlinear generation of photonic crystal fibers. The difference in air filling fraction between fast and slow axis can be used as a sensor for the weak strain.
    • Funds:
    [1]

    Knight J C, Briks T A, Atkin D M 1996 Opt. Lett. 21 1549

    [2]

    Briks T A, Moginlevtsev D, Knight J C, Russell P S J 1999 IEEE Photon. Technol. Lett. 11 676

    [3]

    Wang J Y, Jiang C, Hu W S, Gao M Y 2006 Optical-fiber Technology 12 265

    [4]

    Wang H L, Wang C, Leng Y X,Xu Z Z,Hou L T 2010 Chin. Phys. B 19 054212

    [5]

    Ren G J,Wei Z, Zhang Z, Yao J Q 2009 Acta Phys. Sin. 58 3897 (in Chinese) [任广军、 魏 臻、 张 强、 姚建铨 2009 物理学报 58 3897]

    [6]

    Zhang Y N, Miao R C, Ren L Y,Wang H Y, Wang L L, Zhao W 2007 Chin. Phys. 16 1719

    [7]

    Folkenberg J R, Nielsen M D, Mortensen N A,Jakobsen C, Simonsen H R 2004 Opt. Lett. 28 158

    [8]

    Yang Q Q, HOU L T 2009 Acta. Phys. sin. 58 8345 (in Chinese) [杨倩倩、 侯蓝田 2009 物理学报 58 8345]

    [9]

    Wojcik J, Mergo P, Makara M, Poturaj K, Skorupski K, Klimek J 2010 Photonics Letters (Poland) 2 10

    [10]

    Leon-saved S G, Birks T A,Wadsworth W J, Russell P St J, Mason M W 2004 Opt. Express 12 2864

    [11]

    Selleri S, Vincetti L, Cucinotta A, Zoboli M 2001 Opt. Quantum Electron. 33 359371

    [12]

    Zhang H, Yang B J, Liu Y M,Wang Q G, Yu L, Zhang X G 2009 Chin. Phys. B 18 1116

    [13]

    Boyd R W 2003 Nonlinear Optics 3rd Ed. ( Am. Academic Press) p212

    [14]

    Kakarantzas G, Ortigosa B A, Birks T A, Rusell P St J, Couny F, Managan B J 2003 Opt. Lett. 28 2831

    [15]

    Zhou H S, Li S G, Fu B, Yao Y Y, Zhang L 2010 Chin. Phys. Lett. 27 014208

    [16]

    Zheltikov A 2005 Opt. Soc. Am. B 22 1100

    [17]

    Jiang L H, Hou L T 2010 Acta Phys. Sin. 59 1095 (in Chinese) [姜凌红、 侯蓝田 2010 物理学报 59 1095]

  • [1]

    Knight J C, Briks T A, Atkin D M 1996 Opt. Lett. 21 1549

    [2]

    Briks T A, Moginlevtsev D, Knight J C, Russell P S J 1999 IEEE Photon. Technol. Lett. 11 676

    [3]

    Wang J Y, Jiang C, Hu W S, Gao M Y 2006 Optical-fiber Technology 12 265

    [4]

    Wang H L, Wang C, Leng Y X,Xu Z Z,Hou L T 2010 Chin. Phys. B 19 054212

    [5]

    Ren G J,Wei Z, Zhang Z, Yao J Q 2009 Acta Phys. Sin. 58 3897 (in Chinese) [任广军、 魏 臻、 张 强、 姚建铨 2009 物理学报 58 3897]

    [6]

    Zhang Y N, Miao R C, Ren L Y,Wang H Y, Wang L L, Zhao W 2007 Chin. Phys. 16 1719

    [7]

    Folkenberg J R, Nielsen M D, Mortensen N A,Jakobsen C, Simonsen H R 2004 Opt. Lett. 28 158

    [8]

    Yang Q Q, HOU L T 2009 Acta. Phys. sin. 58 8345 (in Chinese) [杨倩倩、 侯蓝田 2009 物理学报 58 8345]

    [9]

    Wojcik J, Mergo P, Makara M, Poturaj K, Skorupski K, Klimek J 2010 Photonics Letters (Poland) 2 10

    [10]

    Leon-saved S G, Birks T A,Wadsworth W J, Russell P St J, Mason M W 2004 Opt. Express 12 2864

    [11]

    Selleri S, Vincetti L, Cucinotta A, Zoboli M 2001 Opt. Quantum Electron. 33 359371

    [12]

    Zhang H, Yang B J, Liu Y M,Wang Q G, Yu L, Zhang X G 2009 Chin. Phys. B 18 1116

    [13]

    Boyd R W 2003 Nonlinear Optics 3rd Ed. ( Am. Academic Press) p212

    [14]

    Kakarantzas G, Ortigosa B A, Birks T A, Rusell P St J, Couny F, Managan B J 2003 Opt. Lett. 28 2831

    [15]

    Zhou H S, Li S G, Fu B, Yao Y Y, Zhang L 2010 Chin. Phys. Lett. 27 014208

    [16]

    Zheltikov A 2005 Opt. Soc. Am. B 22 1100

    [17]

    Jiang L H, Hou L T 2010 Acta Phys. Sin. 59 1095 (in Chinese) [姜凌红、 侯蓝田 2010 物理学报 59 1095]

  • [1] Cao Ye, Li Rong-Min, Tong Zheng-Rong. Investigation of a new kind of high birefringence photonic crystal fiber. Acta Physica Sinica, 2013, 62(8): 084215. doi: 10.7498/aps.62.084215
    [2] Zhao Yuan-Yuan, Zhou Gui-Yao, Li Jian-She, Han Ying, Wang Chao, Wang Wei. Supercontinuum experimental study of V-type photonic crystal fiber with high birefringence. Acta Physica Sinica, 2013, 62(21): 214212. doi: 10.7498/aps.62.214212
    [3] Xiong Meng-Jie, Li Jin-Yan, Luo Xing, Shen Xiang, Peng Jing-Gang, Li Hai-Qing. Experimental and numerical study of tuneable supercontinuum generation in new kind of highly birefringent photonic crystal fiber. Acta Physica Sinica, 2017, 66(9): 094204. doi: 10.7498/aps.66.094204
    [4] Wang Er-Lei, Jiang Hai-Ming, Xie Kang, Zhang Xiu-Xia. Photonic crystal fibers with high nonlinearity, large birefringence and multiple zero dispersion-wavelength. Acta Physica Sinica, 2014, 63(13): 134210. doi: 10.7498/aps.63.134210
    [5] Qi Yue-Feng, Qiao Han-Ping, Bi Wei-Hong, Liu Yan-Yan. Heat transfer characteristics in fabrication of heat method in photonic crystal fiber grating. Acta Physica Sinica, 2011, 60(3): 034214. doi: 10.7498/aps.60.034214
    [6] Xu Qiang, Miao Run-Cai, Zhang Ya-Ni. High birefringence and negative dispersion effect of hexagonal honeycomb lattice photonic crystal fiber. Acta Physica Sinica, 2012, 61(23): 234210. doi: 10.7498/aps.61.234210
    [7] Su Wei, Lou Shu-Qin, Zou Hui, Han Bo-Lin. Highly birefringent ZrF4-BaF2-LaF3-AlF3-NaF photonic quasi-crystal fiber with twin grapefruits holes. Acta Physica Sinica, 2014, 63(14): 144202. doi: 10.7498/aps.63.144202
    [8] Zhao Xing-Tao, Liu Xiao-Xu, Zheng Yi, Han Ying, Zhou Gui-Yao, Li Shu-Guang, Hou Lan-Tian. Study of photonic crystal fiber with an air core. Acta Physica Sinica, 2012, 61(21): 214210. doi: 10.7498/aps.61.214210
    [9] Yang Qian-Qian, Hou Lan-Tian. Octagonal photonic crystal fiber of birefringence. Acta Physica Sinica, 2009, 58(12): 8345-8351. doi: 10.7498/aps.58.8345
    [10] Li Shan-Shan, Zhang Hao, Bai Jin-Jun, Liu Wei-Wei, Chang Sheng-Jiang. Ultrahigh birefringence terahertz porous fibers based on interlacing layered infiltration method. Acta Physica Sinica, 2015, 64(15): 154201. doi: 10.7498/aps.64.154201
  • Citation:
Metrics
  • Abstract views:  3499
  • PDF Downloads:  921
  • Cited By: 0
Publishing process
  • Received Date:  22 October 2010
  • Accepted Date:  16 November 2010
  • Published Online:  15 September 2011

Investigation of V-type photonic crystal fiber with high birefringence

  • 1. (1)Institute of Ifrared Optical Fibers & Sensors,Yanshan University, Qinhuangdao 066004, China; (2)Institute of Ifrared Optical Fibers & Sensors,Yanshan University, Qinhuangdao 066004, China;State Key Laboratory of Metastable Materials Science & Technology, Yanshan University, Qinhuangdao 066004, China; (3)Institute of Ifrared Optical Fibers & Sensors,Yanshan University, Qinhuangdao 066004, China;State Key Laboratory of Metastable Materials Science & Technology, Yanshan University, Qinhuangdao 066004, China;School of Infromation and Optoelectronic Science and Enginering, South China Normal University, Guangzhou 510006, China

Abstract: According to the full-vector finite element method, a new kind of V-shape photonic crystal fiber with high birefringence is proposed. Simulation results show that the V-shape photonic crystal fiber has a birefringence of 1.239×10-2 at a wavelength of 1.55 μm, when its cladding air hole pitch, large air hole diameter, small air hole diameter are 1.0 μm, 0.95 μm and 0.6 μm, respectively. There are two zero dispersion wavelengths in the visible and the near-infrared region respectively, and the abnormal dispersion zone includes the operation wavelength of Ti:sapphire laser, which is advantageous for nonlinear generation of photonic crystal fibers. The difference in air filling fraction between fast and slow axis can be used as a sensor for the weak strain.

Reference (17)

Catalog

    /

    返回文章
    返回