Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dislocation climb model based on coupling the diffusion theory ofpoint defects with discrete dislocation dynamics

Gao Yuan Liu Zhan-Li Zhao Xue-Chuan Zhang Zhao-Hui Zhuang Zhuo You Xiao-Chuan

Dislocation climb model based on coupling the diffusion theory ofpoint defects with discrete dislocation dynamics

Gao Yuan, Liu Zhan-Li, Zhao Xue-Chuan, Zhang Zhao-Hui, Zhuang Zhuo, You Xiao-Chuan
PDF
Get Citation
  • Dislocation climb plays a vital role in the plastic behavior of crystals at high temperatures. In order to reveal the intrinsic mechanism of climb and its effect on plasticity, a new dislocation climb model is first developed based on the combination of the diffusion theory with both bulk diffusion and pipe diffusion in a three-dimensional discrete dislocation dynamics (DDD) simulation, which is considered to be more physical and widely applicable. Using our model the shrinkage processes of a single prismatic loop group and prismatic loop group are simulated. It is concluded that the climb rate is not directly determined by mechanical climb force as believed in classical theories, but by the gradient of the vacancy concentration around (bulk diffusion) and along (pipe diffusion) the dislocation line. Loop coarsening process is also simulated, and the three pronounced evolving stages of the loop radii and the average vacancy concentrations in crystal are reproduced.
    • Funds:
    [1]

    Hirth J P, Lothe J 1982 Theory of Dislocations (New York: Wiley Interscience)

    [2]

    Li Y, Kong Q P 1989 Acta Phys. Sin. 38 91 (in Chinese) [李勇、孔庆平 1989 物理学报 38 91]

    [3]

    Allnatt A, Lidiard A 1993 Atomic transport in solids (Cambridge: Cambridge University Press)

    [4]

    Caillard D, Martin J 2003 Thermally activated mechanisms in crystal plasticity (Amsterdam: Pergamon Press)

    [5]

    Fedelich B 2002 Int. J. Plast. 18 1

    [6]

    Hiratani M, Zbib H 2002 J. Eng. Mater. Technol. 124 335

    [7]

    Li H, Lin J, Dean T A, Wen S W, Bannister A C 2009 Int. J. Plast. 25 1049

    [8]

    Mordehai D, Clouet E, Fivel M, Verdier M 2008 Philos. Mag. 88 899

    [9]

    Amodeo R, Ghoniem N 1990 Phys. Rev. B 41 6958

    [10]

    Roters F, Raabe D, Gottstein G 1996 Comput. Mater. Sci. 7 56

    [11]

    Argaman N, Levy O, Makov G 2001 Mater. Sci. Eng. A 309 386

    [12]

    Bakó B, Groma I, Györgyi G, Zimányi G 2006 Comput. Mater. Sci. 38 22

    [13]

    Ghoniem N, Tong S, Sun L 2000 Phys. Rev. B 61 913

    [14]

    Cleveringa H H M, Van der Giessen E, Needleman A 1999 Int. J. Plast. 15 837

    [15]

    Tang X, Lagerl f K, Heuer A 2003 J. Am. Ceram. Soc. 86 560

    [16]

    Legros M, Dehm G, Arzt E, Balk T 2008 Science 319 1646

    [17]

    Ge T S 1996 Acta Phys. Sin. 45 1016 (in Chinese) [葛庭燧 1996 物理学报 45 1016]

    [18]

    Edelin G 1971 Philos. Mag. 23 1547

    [19]

    Liu Z L, Liu X M, Zhuang Z, You X C 2009 Scripta Mater. 60 594

    [20]

    Liu Z L, Liu X M, Zhuang Z, You X C 2009 Int. J. Plast. 25 1436

    [21]

    Lu G, Fang B Q, Zhang G C, Xu A G 2009 Acta Phys. Sin. 58 7934 (in Chinese) [卢 果、方步青、张广财、许爱国 2009 物理学报 58 7934]

    [22]

    Silcox J, Whelan M 1960 Philos. Mag. 5 1

    [23]

    Sun H, Pan X, Haeni J, Schlom D 2004 Appl. Phys. Lett. 85 1967

    [24]

    Burton B, Speight M 1986 Philos. Mag. A 53 385

  • [1]

    Hirth J P, Lothe J 1982 Theory of Dislocations (New York: Wiley Interscience)

    [2]

    Li Y, Kong Q P 1989 Acta Phys. Sin. 38 91 (in Chinese) [李勇、孔庆平 1989 物理学报 38 91]

    [3]

    Allnatt A, Lidiard A 1993 Atomic transport in solids (Cambridge: Cambridge University Press)

    [4]

    Caillard D, Martin J 2003 Thermally activated mechanisms in crystal plasticity (Amsterdam: Pergamon Press)

    [5]

    Fedelich B 2002 Int. J. Plast. 18 1

    [6]

    Hiratani M, Zbib H 2002 J. Eng. Mater. Technol. 124 335

    [7]

    Li H, Lin J, Dean T A, Wen S W, Bannister A C 2009 Int. J. Plast. 25 1049

    [8]

    Mordehai D, Clouet E, Fivel M, Verdier M 2008 Philos. Mag. 88 899

    [9]

    Amodeo R, Ghoniem N 1990 Phys. Rev. B 41 6958

    [10]

    Roters F, Raabe D, Gottstein G 1996 Comput. Mater. Sci. 7 56

    [11]

    Argaman N, Levy O, Makov G 2001 Mater. Sci. Eng. A 309 386

    [12]

    Bakó B, Groma I, Györgyi G, Zimányi G 2006 Comput. Mater. Sci. 38 22

    [13]

    Ghoniem N, Tong S, Sun L 2000 Phys. Rev. B 61 913

    [14]

    Cleveringa H H M, Van der Giessen E, Needleman A 1999 Int. J. Plast. 15 837

    [15]

    Tang X, Lagerl f K, Heuer A 2003 J. Am. Ceram. Soc. 86 560

    [16]

    Legros M, Dehm G, Arzt E, Balk T 2008 Science 319 1646

    [17]

    Ge T S 1996 Acta Phys. Sin. 45 1016 (in Chinese) [葛庭燧 1996 物理学报 45 1016]

    [18]

    Edelin G 1971 Philos. Mag. 23 1547

    [19]

    Liu Z L, Liu X M, Zhuang Z, You X C 2009 Scripta Mater. 60 594

    [20]

    Liu Z L, Liu X M, Zhuang Z, You X C 2009 Int. J. Plast. 25 1436

    [21]

    Lu G, Fang B Q, Zhang G C, Xu A G 2009 Acta Phys. Sin. 58 7934 (in Chinese) [卢 果、方步青、张广财、许爱国 2009 物理学报 58 7934]

    [22]

    Silcox J, Whelan M 1960 Philos. Mag. 5 1

    [23]

    Sun H, Pan X, Haeni J, Schlom D 2004 Appl. Phys. Lett. 85 1967

    [24]

    Burton B, Speight M 1986 Philos. Mag. A 53 385

  • [1] Li Gui-Rong, Wang Hong-Ming, Li Pei-Si, Gao Lei-Zhang, Peng Cong-Xiang, Zheng Rui. Mechanism of dislocation kinetics under magnetoplastic effect. Acta Physica Sinica, 2015, 64(14): 148102. doi: 10.7498/aps.64.148102
    [2] Luo Shi-Yu, Li Hong-Tao, Wu Mu-Ying, Wang Shan-Jin, Ling Dong-Xiong, Zhang Wei-Feng, Shao Ming-Zhu. The resonance behaviour and dynamic stabilities of strained superlattice. Acta Physica Sinica, 2010, 59(8): 5766-5771. doi: 10.7498/aps.59.5766
    [3] Luo Shi-Yu, Shao Ming-Zhu, Wei Luo-Xia, Liu Zeng-Rong. Dynamics of dislocation and global bifurcation for a system. Acta Physica Sinica, 2004, 53(6): 1940-1945. doi: 10.7498/aps.53.1940
    [4] HSIN HSIU-SAN. THE FORMATION OF DISLOCATION LOOPS BY VACANCY CONDENSATION. Acta Physica Sinica, 1966, 130(5): 541-546. doi: 10.7498/aps.22.541
    [5] . Acta Physica Sinica, 1975, 142(2): 87-90. doi: 10.7498/aps.24.87
    [6] FANG QIAN-FENG, GE TING-SUI. LOW TEMPERATURE INTERNAL FRICTION PEAKS ASSOCIA-TED WITH THE INTERACTION BETWEEN DISLOCATIONS AND POINT DEFECTS. Acta Physica Sinica, 1993, 42(3): 458-464. doi: 10.7498/aps.42.458
    [7] TAN QI. INVESTIGATION ON THE INTERACTION OF DISLOCATION WITH POINT DEFECTS BY STRAIN AGEING INTERNAL FRICTION OF ALUMINIUM ALLOYS. Acta Physica Sinica, 1994, 43(10): 1658-1664. doi: 10.7498/aps.43.1658
    [8] Cui Li-Juan, Gao Jin, Du Yu-Feng, Zhang Gao-Wei, Zhang Lei, Long Yi, Yang Shan-Wu, Zhan Qian, Wan Fa-Rong. Characterization of dislocation loops in hydrogen-ion irradiated vanadium. Acta Physica Sinica, 2016, 65(6): 066102. doi: 10.7498/aps.65.066102
    [9] LONG QI-WEI, XIONG LIANG-YUE. THE OPPOSITE SIGN DISLOCATIONS AT A CRACK TIP AND THE IMAGE FORCE THEORY OF DISLOCATION-FREE ZONE. Acta Physica Sinica, 1984, 33(6): 755-761. doi: 10.7498/aps.33.755
    [10] GAO FEI. EDGE DISLOCATION IN CRYSTAL DEFECT GAUGE FIELD. Acta Physica Sinica, 1990, 39(10): 1591-1598. doi: 10.7498/aps.39.1591
  • Citation:
Metrics
  • Abstract views:  4315
  • PDF Downloads:  757
  • Cited By: 0
Publishing process
  • Received Date:  25 January 2010
  • Accepted Date:  20 December 2010
  • Published Online:  15 September 2011

Dislocation climb model based on coupling the diffusion theory ofpoint defects with discrete dislocation dynamics

  • 1. Applied Mechanics Laboratory, School of Aerospace, Tsinghua University, Beijing 100084, China

Abstract: Dislocation climb plays a vital role in the plastic behavior of crystals at high temperatures. In order to reveal the intrinsic mechanism of climb and its effect on plasticity, a new dislocation climb model is first developed based on the combination of the diffusion theory with both bulk diffusion and pipe diffusion in a three-dimensional discrete dislocation dynamics (DDD) simulation, which is considered to be more physical and widely applicable. Using our model the shrinkage processes of a single prismatic loop group and prismatic loop group are simulated. It is concluded that the climb rate is not directly determined by mechanical climb force as believed in classical theories, but by the gradient of the vacancy concentration around (bulk diffusion) and along (pipe diffusion) the dislocation line. Loop coarsening process is also simulated, and the three pronounced evolving stages of the loop radii and the average vacancy concentrations in crystal are reproduced.

Reference (24)

Catalog

    /

    返回文章
    返回