Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electronic structure of zigzag graphene nanoribbin terminated by hydroxyl

Hu Xiao-Ying Tao Qiang Zhu Pin-Wen

Electronic structure of zigzag graphene nanoribbin terminated by hydroxyl

Hu Xiao-Ying, Tao Qiang, Zhu Pin-Wen
PDF
Get Citation
  • Using the density-functional theory, the structural stability and the effect of in-plane electric field on the electronic structure of zigzag graphene nanoribbin (OH-ZGNR), which is terminated by hydroxyl, are explored. It is found that hydroxyl bonding on the ZGNR edge is much more stable than H-terminated ZGNR(H-ZGNRs). The ground state of the ZGNR is spin-polarized with a narrow energy gap. Furthermore, transition from semiconducting to metallic phase in ZGNR can be achieved if a proper in-plane electric field is applied across the edges OH-ZGNR.
    • Funds:
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firov A A 2004 Science 306 666

    [2]

    Zhang L J, Xia T 2010 Chin. Phys. B 19 11

    [3]

    Hu H X, Zhang Z H, Liu X H, Qiu M, D K H 2009 Acta Phys. Sin. 58 7156 (in Chinese) [胡海鑫、张振华、刘新海、邱 明、丁开和 2009 物理学报 58 7156]

    [4]

    Luo T, Zhu W, Shi Q W, Wang X P 2008 Acta Phys. Sin. 57 3775 (in Chinese) [罗 涛、朱 伟、石勤伟、王晓平 2008物理学报 57 3775]

    [5]

    Lee H, Son Y W, Park N, Han S, Yu J 2005 Phys. Rev. B 72 174431

    [6]

    Jang B Z, Zhamu A 2008 Mater. Sci. 43 5092

    [7]

    Sinitskii A, Dimiev A, Kosynkin D V, Tour J M 2010 ACS Nano. 4 5405

    [8]

    Raza H, Kan E C 2008 Phys. Rev. B 77 245434

    [9]

    Gunlycke D, Li J, Mintmire J W, White C T 2007 Appl. Phys. Lett. 91 112108

    [10]

    Lee G, Cho K 2009 Phys. Rev. B 79 165440

    [11]

    Hod O, Barone V, Peralta J E, Scuseria G E 2007 Nano. Lett. 7 2295

    [12]

    Hod O, Peralta J E, Scuseria G E 2007 Phys. Rev. B 76 233401

    [13]

    Kan E J, Li Z Y, Yang J L, Hou J G 2007 Appl. Phys. Lett. 91 243116

    [14]

    Hod O, Barone V, Scuseria G E 2008 Phys. Rev. B 77 035411

    [15]

    Soriano D, Rojas F M, Rossier J F, Palacios J J 2010 Phys. Rev. B 81 165409

    [16]

    Zeng M G, Shen L, Cai Y Q, Sha Z D, Feng Y P 2010 Appl. Phys. Lett. 96 042104

    [17]

    Tada K, Watanabe K 2002 Phys. Rev. Lett. 88 127601

    [18]

    Chun Wang, Liang Qiao, Chaoqun Qu, Weitao Zheng, Qing Jiang 2009 J. Phys. Chem. C 113 812

    [19]

    Son Y W, Cohen M L, Louie S 2006 Nature 444 347

    [20]

    Lee Y L, Kim S, Park C, Ihm J, Son Y W 2010 Acsnano 4 1345

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firov A A 2004 Science 306 666

    [2]

    Zhang L J, Xia T 2010 Chin. Phys. B 19 11

    [3]

    Hu H X, Zhang Z H, Liu X H, Qiu M, D K H 2009 Acta Phys. Sin. 58 7156 (in Chinese) [胡海鑫、张振华、刘新海、邱 明、丁开和 2009 物理学报 58 7156]

    [4]

    Luo T, Zhu W, Shi Q W, Wang X P 2008 Acta Phys. Sin. 57 3775 (in Chinese) [罗 涛、朱 伟、石勤伟、王晓平 2008物理学报 57 3775]

    [5]

    Lee H, Son Y W, Park N, Han S, Yu J 2005 Phys. Rev. B 72 174431

    [6]

    Jang B Z, Zhamu A 2008 Mater. Sci. 43 5092

    [7]

    Sinitskii A, Dimiev A, Kosynkin D V, Tour J M 2010 ACS Nano. 4 5405

    [8]

    Raza H, Kan E C 2008 Phys. Rev. B 77 245434

    [9]

    Gunlycke D, Li J, Mintmire J W, White C T 2007 Appl. Phys. Lett. 91 112108

    [10]

    Lee G, Cho K 2009 Phys. Rev. B 79 165440

    [11]

    Hod O, Barone V, Peralta J E, Scuseria G E 2007 Nano. Lett. 7 2295

    [12]

    Hod O, Peralta J E, Scuseria G E 2007 Phys. Rev. B 76 233401

    [13]

    Kan E J, Li Z Y, Yang J L, Hou J G 2007 Appl. Phys. Lett. 91 243116

    [14]

    Hod O, Barone V, Scuseria G E 2008 Phys. Rev. B 77 035411

    [15]

    Soriano D, Rojas F M, Rossier J F, Palacios J J 2010 Phys. Rev. B 81 165409

    [16]

    Zeng M G, Shen L, Cai Y Q, Sha Z D, Feng Y P 2010 Appl. Phys. Lett. 96 042104

    [17]

    Tada K, Watanabe K 2002 Phys. Rev. Lett. 88 127601

    [18]

    Chun Wang, Liang Qiao, Chaoqun Qu, Weitao Zheng, Qing Jiang 2009 J. Phys. Chem. C 113 812

    [19]

    Son Y W, Cohen M L, Louie S 2006 Nature 444 347

    [20]

    Lee Y L, Kim S, Park C, Ihm J, Son Y W 2010 Acsnano 4 1345

  • [1] Jin Feng, Zhang Zhen-Hua, Wang Cheng-Zhi, Deng Xiao-Qing, Fan Zhi-Qiang. Twisting effects on energy band structures and transmission behaviors of graphene nanoribbons. Acta Physica Sinica, 2013, 62(3): 036103. doi: 10.7498/aps.62.036103
    [2] Li Jun, Zhang Zhen-Hua, Wang Chen-Zhi, Deng Xiao-Qing, Fan Zhi-Qiang. Rolling effects on electronic characteristics for graphene nanoribbons. Acta Physica Sinica, 2013, 62(5): 056103. doi: 10.7498/aps.62.056103
    [3] Gao Yan, Chen Rui-Yun, Wu Rui-Xiang, Zhang Guo-Feng, Xiao Lian-Tuan, Jia Suo-Tang. Electric field induced polarization dynamics of graphene oxide. Acta Physica Sinica, 2013, 62(23): 233601. doi: 10.7498/aps.62.233601
    [4] Yin Yue-Hong, Xu Hong-Ping. Theoretical study on the hydrogen storage properties of (MgO)4 under external electric field. Acta Physica Sinica, 2019, 68(16): 163601. doi: 10.7498/aps.68.20190544
    [5] Teng Bo-Tao, Jiang Shi-Yu, Yang Pei-Fang, Hu Juan-Mei, Wu Feng-Min. Density functional theory study of rhodium adsorption on single-wall carbon nanotubes. Acta Physica Sinica, 2009, 58(5): 3331-3337. doi: 10.7498/aps.58.3331
    [6] Wang Ya-Jing, Li Gui-Xia, Wang Zhi-Hua, Gong Li-Ji, Wang Xiu-Fang. Diameter monodispersity of imogolite-like nanotube: a density functional theory study. Acta Physica Sinica, 2016, 65(4): 048101. doi: 10.7498/aps.65.048101
    [7] Luan Xiao-Wei, Sun Jian-Ping, Wang Fan-Song, Wei Hui-Lan, Hu Yi-Fan. Density functional study of metal lithium atom adsorption on antimonene. Acta Physica Sinica, 2019, 68(2): 026802. doi: 10.7498/aps.68.20181648
    [8] Xu Ying-Ying, Kan Yu-He, Wu Jie, Tao Wei, Su Zhong-Min. Theoretical study on the electronic structures and photophysical properties of carbon nanorings and their analogues. Acta Physica Sinica, 2013, 62(8): 083101. doi: 10.7498/aps.62.083101
    [9] Wang Li-Na, Wen He-Jing, Guan Li, Wang Hai-Long, Fan Bing-Bing, Zhang Rui. Study on the structure of water chain encapsulated in carbon nanotube by density functional theory. Acta Physica Sinica, 2011, 60(1): 012101. doi: 10.7498/aps.60.012101
    [10] Cui Shu-Wen, Li Lu, Wei Lian-Jia, Qian Ping. Theoretical study of density functional of confined CO oxidation reaction between bilayer graphene. Acta Physica Sinica, 2019, 68(21): 218101. doi: 10.7498/aps.68.20190447
  • Citation:
Metrics
  • Abstract views:  3023
  • PDF Downloads:  628
  • Cited By: 0
Publishing process
  • Received Date:  01 November 2010
  • Accepted Date:  06 December 2010
  • Published Online:  15 September 2011

Electronic structure of zigzag graphene nanoribbin terminated by hydroxyl

  • 1. (1)College of Science, Changchun University, Changchun 130022, China; (2)College of Science, Changchun University, Changchun 130022, China;State Key Lab of Superhard Materials, Jilin University, Changchun 130012, China; (3)State Key Lab of Superhard Materials, Jilin University, Changchun 130012, China

Abstract: Using the density-functional theory, the structural stability and the effect of in-plane electric field on the electronic structure of zigzag graphene nanoribbin (OH-ZGNR), which is terminated by hydroxyl, are explored. It is found that hydroxyl bonding on the ZGNR edge is much more stable than H-terminated ZGNR(H-ZGNRs). The ground state of the ZGNR is spin-polarized with a narrow energy gap. Furthermore, transition from semiconducting to metallic phase in ZGNR can be achieved if a proper in-plane electric field is applied across the edges OH-ZGNR.

Reference (20)

Catalog

    /

    返回文章
    返回