Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of natural impurity on electronic structure and catalytic activity of pyrite

Guo Jin Chen Jian-Hua Li Yu-Qiong

Influence of natural impurity on electronic structure and catalytic activity of pyrite

Guo Jin, Chen Jian-Hua, Li Yu-Qiong
PDF
Get Citation
  • The electronic structures and the optical properties of pyrite containing twenty natural impurities, Co, Ni, As, Se, Te, Cu, Au, Ag, Mo, Zn, Tl, Sn, Ru, Pd, Pt, Hg, Cd, Bi, Pb and Sb, are investigated using the density functional theory and the plane wave pseudopotential method, and the catalytic activity of pyrite is discussed. For the transition metal-bearing pyrite, there are introduced impurity energy levels in the band contributing from impurity d orbital, while for the other metal and non-metal-bearing pyrite, the impurity energy levels are contributed from impurities s or p orbital. The presences of Cu, Mo, As, Au, Ag or Ni can enhance the electrocatalytic ability of pyrite to the oxygen reduction. All the impurities, except Zn, Mo, Ru, As, Sb, Se and Te, can enhance the ability of pyrite surface to capture electrons and hence the recombination rate of photoinduced electrons and holes wile be reduced. Calculations of optical properties indicate that Cd, Hg, Ru, Se, Te and Zn impurities each have small influence on the absorption band edge, while the presence of other impurity makes a red shift of absorption band edge of pyrite. Especially, the presences of Au and Ag impuritie increase the adsorption coefficient of pyrite by two orders of magnitude.
    • Funds:
    [1]

    Rand D A J 1977 J. Electroanal. Chem. 83 19

    [2]

    Ahlberg E, Broo A E 1996 Int. J. Miner. Process. 46 73

    [3]

    Ahlberg E, Broo A E 1996 Int. J. Miner. Process. 47 49

    [4]

    Kuznetsov P N, Sharypov V I, Kurochkin M G, Pospelova T M, Kornietz E D, Trukhacheva V A, Chumakov V G 1989 React. Kinet. Catal. Lett. 38 255

    [5]

    Baldwin R M, Vinciguerra S 1983 Fuel 62 498

    [6]

    Garg D, Givens E N 1982 Ind. Eng. Chem. Process Des. Dev. 21 113

    [7]

    Martino A, Wilcoxon J P, Kawola J S 1994 Energy Fuels 8 1289

    [8]

    Shi J X, Lu A H, Chen J 2005 Acta Pertrol. Mineral. 24 539 (in Chinese) [石俊仙、鲁安怀、陈 洁 2005 岩石矿物学杂志 24 539]

    [9]

    Liu P, Luo H H 2007 J. Wuhan Inst. Tech.29 41 (in Chinese) [刘 鹏、罗惠华 2007 武汉工程大学学报 29 41]

    [10]

    Arehart G B, Eldridge C S, Chryssoulis S L, Kesler S E 1993 Geochim. Cosmochim. Acta 57 1505

    [11]

    Brill B A 1989 Can. Mineral. 27 263

    [12]

    Cabri L J, Blank H, Gorsey A E, Laflamme J H G, Nobiling R, Sizgoric M B, Traxel K 1984 Can. Mineral. 22 521

    [13]

    Chenery S, Cook J M, Stylus M, Cameron E M 1995 Chem. Geol. 124 55

    [14]

    Griffin W L, Ashley P M, Ryan C G, Soey H S, Suter G F 1991 Can. Mineral. 29 185

    [15]

    Oberthür T, Cabri L J, Weiser T W, McMahon G, Muller P 1997 Can. Mineral. 35 597

    [16]

    Huston D L, Sie S H, Suter G F, Cooke D R, Both R A 1995 Econ. Geol. 90 1167

    [17]

    Hara J, Kawabe Y, Komai T, Inoue C 2009 Int. J. Environ. Sci. Eng. 1-2 91

    [18]

    Susac D, Zhu L, Teo M, Sode A, Wong K C, Wong P C, Parsons R R, Bizzotto D, Mitchell K A R, Campbell S A 2007 J. Phys. Chem. C 111 18715

    [19]

    Clark S J, Segall,M D, Pickard C J, Hasnip P J, Probert M I J, Refson K, Payne M C 2005 Z. Kristallogr. 220 567

    [20]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter. 14 2717

    [21]

    Vanderbilt D 1990 Phys. Rev. B 40 7892

    [22]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [23]

    Pack J D, Monkhorst H J 1977 Phys. Rev. B 16 1748

    [24]

    Xu X F, Shao X H 2009 Acta Phys. Sin. 58 1908 (in Chinese) [徐新发、邵晓红 2009 物理学报 58 1908]

    [25]

    Prince K C, Matteucci M, Kuepper K, Chiuzbaian S G, Barkowski S, Neumann M 2005 Phys. Rev. 71 085102-1

    [26]

    Edelbro R, Sandström Å, Paul J 2003 Appl. Surf. Sci. 206 300

    [27]

    Oertzen G U, Jones R T, Gerson A R 2005 Phys. Chem. Miner. 32 255

    [28]

    Womes M, Karnatak R C, Esteva J M, Lefebvre I, Alla G, Olivier-fourcade J, Jumas J C 1997 J. Phys. Chem. Solids 58 345

    [29]

    Opahle I, Koepernik K, Eschrig H 2000 Comput. Mater. Sci. 17 206

    [30]

    Zhao G L, Callaway J, Hayashibara M 1993 Phys. Rev. B 48 15781

    [31]

    Bullett D W 1982 J. Phys. C: Solid State Phys. 15 6163

    [32]

    Schlegel A, Wachter P 1976 J. Phys. C: Solid State Phys. 9 3363

  • [1]

    Rand D A J 1977 J. Electroanal. Chem. 83 19

    [2]

    Ahlberg E, Broo A E 1996 Int. J. Miner. Process. 46 73

    [3]

    Ahlberg E, Broo A E 1996 Int. J. Miner. Process. 47 49

    [4]

    Kuznetsov P N, Sharypov V I, Kurochkin M G, Pospelova T M, Kornietz E D, Trukhacheva V A, Chumakov V G 1989 React. Kinet. Catal. Lett. 38 255

    [5]

    Baldwin R M, Vinciguerra S 1983 Fuel 62 498

    [6]

    Garg D, Givens E N 1982 Ind. Eng. Chem. Process Des. Dev. 21 113

    [7]

    Martino A, Wilcoxon J P, Kawola J S 1994 Energy Fuels 8 1289

    [8]

    Shi J X, Lu A H, Chen J 2005 Acta Pertrol. Mineral. 24 539 (in Chinese) [石俊仙、鲁安怀、陈 洁 2005 岩石矿物学杂志 24 539]

    [9]

    Liu P, Luo H H 2007 J. Wuhan Inst. Tech.29 41 (in Chinese) [刘 鹏、罗惠华 2007 武汉工程大学学报 29 41]

    [10]

    Arehart G B, Eldridge C S, Chryssoulis S L, Kesler S E 1993 Geochim. Cosmochim. Acta 57 1505

    [11]

    Brill B A 1989 Can. Mineral. 27 263

    [12]

    Cabri L J, Blank H, Gorsey A E, Laflamme J H G, Nobiling R, Sizgoric M B, Traxel K 1984 Can. Mineral. 22 521

    [13]

    Chenery S, Cook J M, Stylus M, Cameron E M 1995 Chem. Geol. 124 55

    [14]

    Griffin W L, Ashley P M, Ryan C G, Soey H S, Suter G F 1991 Can. Mineral. 29 185

    [15]

    Oberthür T, Cabri L J, Weiser T W, McMahon G, Muller P 1997 Can. Mineral. 35 597

    [16]

    Huston D L, Sie S H, Suter G F, Cooke D R, Both R A 1995 Econ. Geol. 90 1167

    [17]

    Hara J, Kawabe Y, Komai T, Inoue C 2009 Int. J. Environ. Sci. Eng. 1-2 91

    [18]

    Susac D, Zhu L, Teo M, Sode A, Wong K C, Wong P C, Parsons R R, Bizzotto D, Mitchell K A R, Campbell S A 2007 J. Phys. Chem. C 111 18715

    [19]

    Clark S J, Segall,M D, Pickard C J, Hasnip P J, Probert M I J, Refson K, Payne M C 2005 Z. Kristallogr. 220 567

    [20]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter. 14 2717

    [21]

    Vanderbilt D 1990 Phys. Rev. B 40 7892

    [22]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [23]

    Pack J D, Monkhorst H J 1977 Phys. Rev. B 16 1748

    [24]

    Xu X F, Shao X H 2009 Acta Phys. Sin. 58 1908 (in Chinese) [徐新发、邵晓红 2009 物理学报 58 1908]

    [25]

    Prince K C, Matteucci M, Kuepper K, Chiuzbaian S G, Barkowski S, Neumann M 2005 Phys. Rev. 71 085102-1

    [26]

    Edelbro R, Sandström Å, Paul J 2003 Appl. Surf. Sci. 206 300

    [27]

    Oertzen G U, Jones R T, Gerson A R 2005 Phys. Chem. Miner. 32 255

    [28]

    Womes M, Karnatak R C, Esteva J M, Lefebvre I, Alla G, Olivier-fourcade J, Jumas J C 1997 J. Phys. Chem. Solids 58 345

    [29]

    Opahle I, Koepernik K, Eschrig H 2000 Comput. Mater. Sci. 17 206

    [30]

    Zhao G L, Callaway J, Hayashibara M 1993 Phys. Rev. B 48 15781

    [31]

    Bullett D W 1982 J. Phys. C: Solid State Phys. 15 6163

    [32]

    Schlegel A, Wachter P 1976 J. Phys. C: Solid State Phys. 9 3363

  • [1] Chen Li-Qun, Yu Tao, Peng Xiao-Fang, Liu Jian. The site preference of refractory element W in NiAl dislocation core and its effects on bond characters. Acta Physica Sinica, 2013, 62(11): 117101. doi: 10.7498/aps.62.117101
    [2] Li Jian-Hua, Cui Yuan-Shun, Zeng Xiang-Hua, Chen Gui-Bin. Investigations of structural phase transition, electronic structures and optical properties in ZnS. Acta Physica Sinica, 2013, 62(7): 077102. doi: 10.7498/aps.62.077102
    [3] Hu Yong-Jin, Wu Yun-Pei, Liu Guo-Ying, Luo Shi-Jun, He Kai-Hua. Structural phase transition, electronic structures and optical properties of ZnTe. Acta Physica Sinica, 2015, 64(22): 227802. doi: 10.7498/aps.64.227802
    [4] Xing Hai-Ying, Fan Guang-Han, He Miao, Zhang Yong, Zhou Tian-Ming, Zhao De-Gang. Electronic structure and optical properties of GaN with Mn-doping. Acta Physica Sinica, 2008, 57(10): 6513-6519. doi: 10.7498/aps.57.6513
    [5] Duan Man-Yi, Xu Ming, Zhou Hai-Ping, Chen Qing-Yun, Hu Zhi-Gang, Dong Cheng-Jun. Electronic structure and optical properties of ZnO doped with carbon. Acta Physica Sinica, 2008, 57(10): 6520-6525. doi: 10.7498/aps.57.6520
    [6] Li Xu-Zhen, Xie Quan, Chen Qian, Zhao Feng-Juan, Cui Dong-Meng. The study on the electronic structure and optical properties of OsSi2. Acta Physica Sinica, 2010, 59(3): 2016-2021. doi: 10.7498/aps.59.2016
    [7] Pan Feng-Chun, Lin Xue-Ling, Cao Zhi-Jie, Li Xiao-Fu. Electronic structures and optical properties of Fe, Co, and Ni doped GaSb. Acta Physica Sinica, 2019, 68(18): 184202. doi: 10.7498/aps.68.20190290
    [8] Pan Lei, Lu Tie-Cheng, Su Rui, Wang Yue-Zhong, Qi Jian-Qi, Fu Jia, Zhang Yi, He Duan-Wei. Study of electronic structure and optical propertise of -AlON crystal. Acta Physica Sinica, 2012, 61(2): 027101. doi: 10.7498/aps.61.027101
    [9] Wu Qiong, Liu Jun, Dong Qian-Min, Liu Yang, Liang Pei, Shu Hai-Bo. Quantum confinement effect on electronic and optical properties of SnS. Acta Physica Sinica, 2014, 63(6): 067101. doi: 10.7498/aps.63.067101
    [10] Jiao Zhao-Yong, Yang Ji-Fei, Zhang Xian-Zhou, Ma Shu-Hong, Guo Yong-Liang. Theoretical investigation of elastic, electronic, and optical properties of zinc-blende structure GaN under high pressure. Acta Physica Sinica, 2011, 60(11): 117103. doi: 10.7498/aps.60.117103
  • Citation:
Metrics
  • Abstract views:  3350
  • PDF Downloads:  781
  • Cited By: 0
Publishing process
  • Received Date:  29 September 2010
  • Accepted Date:  19 November 2010
  • Published Online:  15 September 2011

Influence of natural impurity on electronic structure and catalytic activity of pyrite

  • 1. (1)College of Physics Science and Technology, Guangxi University,Nanning 530004, China; (2)College of Resources and Metallurgy, Guangxi University, Nanning 530004, China;College of Physics Science and Technology, Guangxi University,Nanning 530004, China; (3)School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China

Abstract: The electronic structures and the optical properties of pyrite containing twenty natural impurities, Co, Ni, As, Se, Te, Cu, Au, Ag, Mo, Zn, Tl, Sn, Ru, Pd, Pt, Hg, Cd, Bi, Pb and Sb, are investigated using the density functional theory and the plane wave pseudopotential method, and the catalytic activity of pyrite is discussed. For the transition metal-bearing pyrite, there are introduced impurity energy levels in the band contributing from impurity d orbital, while for the other metal and non-metal-bearing pyrite, the impurity energy levels are contributed from impurities s or p orbital. The presences of Cu, Mo, As, Au, Ag or Ni can enhance the electrocatalytic ability of pyrite to the oxygen reduction. All the impurities, except Zn, Mo, Ru, As, Sb, Se and Te, can enhance the ability of pyrite surface to capture electrons and hence the recombination rate of photoinduced electrons and holes wile be reduced. Calculations of optical properties indicate that Cd, Hg, Ru, Se, Te and Zn impurities each have small influence on the absorption band edge, while the presence of other impurity makes a red shift of absorption band edge of pyrite. Especially, the presences of Au and Ag impuritie increase the adsorption coefficient of pyrite by two orders of magnitude.

Reference (32)

Catalog

    /

    返回文章
    返回