Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The mechanism of directional cellular growth with shear flow

Wang Jian-Yuan Zhai Wei Jin Ke-Xin Chen Chang-Le

The mechanism of directional cellular growth with shear flow

Wang Jian-Yuan, Zhai Wei, Jin Ke-Xin, Chen Chang-Le
PDF
Get Citation
  • The directional cellular growth of SCN-0.2%Salol transparent alloy in the presence of shear flow at the liquid-solid interface is in-situ observed, and the cellular spacing adjusting mechanism is carefully investigated. It is found that the cellular array deflects forward the incoming flow direction, and the stable cellular spacing decreases with the increase of the flow rate. This is due mainly to the reducing destabilization wavelength caused by shear flow. Instead of the double symmetric splitting mode under static condition, the splitting mechanism of cellular growth exhibits multiplicity, which is characterized mainly by (i) multi-splitting and asymmetric splitting, and (ii) secondary branches appearing on the upstream side whose growth direction subsequently shifts to ward the direction paralleled to the trunk to form new cells. Meanwhile, the selected mechanism transits from the weak cells eliminated by the relatively strong ones on both sides during static solidification to the growth of weak cells on the downstream side suppressed by the stronger cells at the upstream side when shear flow is applied.
    • Funds:
    [1]

    Verhoven J 1971 Metall. Trans. 2 2673

    [2]

    Billia B, Jamgotchian H, Trivedi R 1990 J. Crystal Growth 106 410

    [3]

    Georgelin M, Pocheau A 2004 J. Crystal Growth 268 272

    [4]

    Zhai W,Wang N,Wei B B 2007 Acta Phys. Sin. 56 2353 (in Chinese) [翟 薇、 王 楠、 魏炳波 2007 物理学报 56 2353]

    [5]

    Xing H, Wang J Y, Chen C L, Jin K X, Shen Z F 2010 Scripta Materialia 63 1228

    [6]

    Wang J Y, Chen C L, Zhai W, Jin K X 2009 Acta. Phys. Sin. 58 6554 (in Chinese) [王建元、 陈长乐、 翟 薇、 金克新 2009 物理学报 58 6554]

    [7]

    Ivantsov G P 1947 Dokl. Akad. Nauk. SSSR 558 567

    [8]

    Trivedi R 1970 Acta Metall. 18 287

    [9]

    Mullins W W, Sekerka R F 1964 J. App. Phys. 35 444

    [10]

    Hunt J D 1979 Solidification and Casting of Metals, The Metals Society, London, p3

    [11]

    Kurz W, Fisher D 1981 Acta Metall. 29 11

    [12]

    Trivedi R 1984 Metall. Trans. 15 A 977

    [13]

    Liu S, Lu D Y, Huang T, Zhou Y H 1993 Acta Metallurgica Sinica 29 A 148 (in Chinese) [刘 山、 鲁德洋、 黄 韬、 周尧和 1993 金属学报 29 A 148]

    [14]

    Mao Y J, Liu J, Zhou Y H 1997 Journal of Synthetic Crystals 26 47 (in Chinese) [毛应俊、 刘 建、 周尧和 1997 人工晶体学报 26 47]

    [15]

    Zhang M, Maxworth T 2002 J. Fluid .Mesh. 470 247

  • [1]

    Verhoven J 1971 Metall. Trans. 2 2673

    [2]

    Billia B, Jamgotchian H, Trivedi R 1990 J. Crystal Growth 106 410

    [3]

    Georgelin M, Pocheau A 2004 J. Crystal Growth 268 272

    [4]

    Zhai W,Wang N,Wei B B 2007 Acta Phys. Sin. 56 2353 (in Chinese) [翟 薇、 王 楠、 魏炳波 2007 物理学报 56 2353]

    [5]

    Xing H, Wang J Y, Chen C L, Jin K X, Shen Z F 2010 Scripta Materialia 63 1228

    [6]

    Wang J Y, Chen C L, Zhai W, Jin K X 2009 Acta. Phys. Sin. 58 6554 (in Chinese) [王建元、 陈长乐、 翟 薇、 金克新 2009 物理学报 58 6554]

    [7]

    Ivantsov G P 1947 Dokl. Akad. Nauk. SSSR 558 567

    [8]

    Trivedi R 1970 Acta Metall. 18 287

    [9]

    Mullins W W, Sekerka R F 1964 J. App. Phys. 35 444

    [10]

    Hunt J D 1979 Solidification and Casting of Metals, The Metals Society, London, p3

    [11]

    Kurz W, Fisher D 1981 Acta Metall. 29 11

    [12]

    Trivedi R 1984 Metall. Trans. 15 A 977

    [13]

    Liu S, Lu D Y, Huang T, Zhou Y H 1993 Acta Metallurgica Sinica 29 A 148 (in Chinese) [刘 山、 鲁德洋、 黄 韬、 周尧和 1993 金属学报 29 A 148]

    [14]

    Mao Y J, Liu J, Zhou Y H 1997 Journal of Synthetic Crystals 26 47 (in Chinese) [毛应俊、 刘 建、 周尧和 1997 人工晶体学报 26 47]

    [15]

    Zhang M, Maxworth T 2002 J. Fluid .Mesh. 470 247

  • [1] Wang Jian-Yuan, Chen Chang-Le, Zhai Wei, Jin Ke-Xin. Directional growth of monotectic alloy with and without shear flow. Acta Physica Sinica, 2010, 59(10): 7424-7430. doi: 10.7498/aps.59.7424
    [2] Wang Jian-Yuan, Chen Chang-Le, Zhai Wei, Jin Ke-Xin. Directional dendrite growth of SCN-3wt% H2O under shear flow. Acta Physica Sinica, 2009, 58(9): 6554-6559. doi: 10.7498/aps.58.6554
    [3] Wang Xian-Bin, Lin Xin, Wang Li-Lin, Yu Hong-Lei, Wang Meng, Huang Wei-Dong. Influence of liquid flow on cellular and dendritic spacings. Acta Physica Sinica, 2013, 62(7): 078102. doi: 10.7498/aps.62.078102
    [4] Chen Ming-Wen, Chen Yi-Chen, Zhang Wen-Long, Liu Xiu-Min, Wang Zi-Dong. Effect of anisotropic surface tension on deep cellular crystal growth in directional solidification. Acta Physica Sinica, 2014, 63(3): 038101. doi: 10.7498/aps.63.038101
    [5] Chen Rui, Xu Qing-Yan, Liu Bai-Cheng. Simulation of dendritic competitive growth during directional solidification using modified cellular automaton method. Acta Physica Sinica, 2014, 63(18): 188102. doi: 10.7498/aps.63.188102
    [6] Jiang Han, Chen Ming-Wen, Wang Tao, Wang Zi-Dong. Effects of anisotropic interface kinetics and surface tension on deep cellular crystal growth in directional solidification. Acta Physica Sinica, 2017, 66(10): 106801. doi: 10.7498/aps.66.106801
    [7] Zhang Bing-Po, Cai Chun-Feng, Cai Xi-Kun, Wu Hui-Zhen, Wang Miao. Study of growth of [111]-oriented CdTe thin films by MBE. Acta Physica Sinica, 2012, 61(4): 046802. doi: 10.7498/aps.61.046802
    [8] Zhang Ning-Xi, Zhu Hui-Bing, Lin Heng, Huang Meng-Yuan. One-dimensional cellular automaton model of traffic flow considering dynamic headway. Acta Physica Sinica, 2015, 64(2): 024501. doi: 10.7498/aps.64.024501
    [9] Wang Xian-Bin, Lin Xin, Wang Li-Lin, Bai Bei-Bei, Wang Meng, Huang Wei-Dong. Effect of crystallographic orientation on dendrite growth in directional solidification. Acta Physica Sinica, 2013, 62(10): 108103. doi: 10.7498/aps.62.108103
    [10] Yuan Hong-Tao, Zhang Yao, Gu Jing-Hua. A study on the in-situ growth of highly oriented ZnO whisker. Acta Physica Sinica, 2004, 53(2): 646-650. doi: 10.7498/aps.53.646
  • Citation:
Metrics
  • Abstract views:  3142
  • PDF Downloads:  642
  • Cited By: 0
Publishing process
  • Received Date:  18 November 2010
  • Accepted Date:  01 December 2010
  • Published Online:  15 September 2011

The mechanism of directional cellular growth with shear flow

  • 1. School of Science, Northwestern Polytechnical University, Xi’an 710072, China

Abstract: The directional cellular growth of SCN-0.2%Salol transparent alloy in the presence of shear flow at the liquid-solid interface is in-situ observed, and the cellular spacing adjusting mechanism is carefully investigated. It is found that the cellular array deflects forward the incoming flow direction, and the stable cellular spacing decreases with the increase of the flow rate. This is due mainly to the reducing destabilization wavelength caused by shear flow. Instead of the double symmetric splitting mode under static condition, the splitting mechanism of cellular growth exhibits multiplicity, which is characterized mainly by (i) multi-splitting and asymmetric splitting, and (ii) secondary branches appearing on the upstream side whose growth direction subsequently shifts to ward the direction paralleled to the trunk to form new cells. Meanwhile, the selected mechanism transits from the weak cells eliminated by the relatively strong ones on both sides during static solidification to the growth of weak cells on the downstream side suppressed by the stronger cells at the upstream side when shear flow is applied.

Reference (15)

Catalog

    /

    返回文章
    返回