Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dynamics of current controlled switching converters under wide circuit parameter variation

Bao Bo-Cheng Yang Ping Ma Zheng-Hua Zhang Xi

Dynamics of current controlled switching converters under wide circuit parameter variation

Bao Bo-Cheng, Yang Ping, Ma Zheng-Hua, Zhang Xi
PDF
Get Citation
  • With current-controlled buck-boost converter used as an example, through a detailed description of the switch state of the switching converter under wide circuit parameter variation, such as input voltage and load resistance variation, two inductor current borders in the current controlled switching converter are derived and an accurate discrete-time model is established. The validation of the discrete-time model is verified by a piecewise-linear model. Based on the discrete-time model, the complex dynamical behaviors existing in switching converter, such as period-double bifurcation, border-collision bifurcation, robust chaos and intermittent chaos, etc., are revealed. By formulating the Jacobian, the maximum Lyapunov exponent and the movement trajectories of eigvalues with the variations of circuit parameters are obtained. By utilizing the parameter-space maps, the operation-state regions corresponding to circuit parameter regions are estimated. Finally, an experimental setup is implemented, the corresponding observation results are consistent with those of theory analyses. In this paper the dynamics theory in switching converters is investigated systematically; the analysis methods and research results are helpful for designing and controlling switching converters.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51177140), the Natural Science Foundation of Changzhou, Jiangsu Province, China (Grant No. CJ20120004), and the Scientific Research Foundation of Zhejiang Provincial Education Department, China (Grant No. Y201225848).
    [1]

    Deane J H B, Hamill D C 1990 IEEE Trans. Power Electron. 5 260

    [2]

    Liu F 2010 Chin. Phys. B 19 080511

    [3]

    Wang J P, Xu J P, Xu Y J 2011 Acta Phys. Sin. 60 058401 (in Chinese) [王金平, 许建平, 徐杨军 2011 物理学报 60 058401]

    [4]

    Zhou G H, Xu J P, Bao B C, Jin Y Y 2010 Chin. Phys. B 19 060508

    [5]

    Wang F Q, Ma X K, Yan Y 2011 Acta Phys. Sin. 60 060510 (in Chinese) [王发强, 马西奎, 闫晔 2011 物理学报 60 060510]

    [6]

    Basak B, Parui S 2010 IEEE Trans. Power Electron. 25 1556

    [7]

    Tse C K, Bernardo M D 2002 Proc. IEEE 90 768

    [8]

    Giral R, El Aroudi A, Martinez-Salamero L, Leyva R, Maixe J 2001 Electron. Lett. 37 274

    [9]

    El Aroudi A, Rodriguez E, Leyva R, Alarcon E 2010 IEEE Trans. Circuits Syst. II, Exp. Briefs 57 218

    [10]

    Bao B C, Xu J P, Liu Z 2008 J. Univ. of Electronic Science and Technology of China 37 397 (in Chinese) [包伯成, 许建平, 刘中2008 电子科技大学学报 37 397]

    [11]

    Dai D, Ma X K, Li X F 2003 Acta Phys. Sin. 52 2729 (in Chinese) [戴栋, 马西奎, 李小峰 2003 物理学报 52 2729]

    [12]

    Banerjee S, Parui S, Gupta A 2004 IEEE Trans. Circuits and Systems-II 51 649

    [13]

    Parui S, Banerjee S 2003 IEEE Trans. Circuits and Systems -I 50 1464

    [14]

    Saito T, Kabe T, Ishikawa Y, Matsuoka Y, Torikai H 2007 Int. J. Bifur. Chaos 17 3373

    [15]

    Bao B C, Zhou G H, Xu J P, Liu Z 2011 IEEE Trans. Power Electron. 26 1968

    [16]

    Bao B C, Xu J P, Liu Z 2009 Chin. Phys. B 18 4742

    [17]

    Bao B C, Xu J P, Liu Z 2009 Acta Phys. Sin. 58 2949 (in Chinese) [包伯成, 许建平, 刘中 2009 物理学报 58 2949]

    [18]

    Xie F, Yang R, Zhang B 2010 Acta Phys. Sin. 59 8393 (in Chinese) [谢帆, 杨汝, 张波 2010 物理学报 59 8393]

    [19]

    Elaydi S N 2008 Discrete Chaos With Applications in Science and Engineering (Chapman & Hall/CRC)

    [20]

    Chen Y F, Tse C K, Qiu S S, Lindenmüller L, Schwarz W 2008 IEEE Trans. Circuits Syst. -I 55 3335

  • [1]

    Deane J H B, Hamill D C 1990 IEEE Trans. Power Electron. 5 260

    [2]

    Liu F 2010 Chin. Phys. B 19 080511

    [3]

    Wang J P, Xu J P, Xu Y J 2011 Acta Phys. Sin. 60 058401 (in Chinese) [王金平, 许建平, 徐杨军 2011 物理学报 60 058401]

    [4]

    Zhou G H, Xu J P, Bao B C, Jin Y Y 2010 Chin. Phys. B 19 060508

    [5]

    Wang F Q, Ma X K, Yan Y 2011 Acta Phys. Sin. 60 060510 (in Chinese) [王发强, 马西奎, 闫晔 2011 物理学报 60 060510]

    [6]

    Basak B, Parui S 2010 IEEE Trans. Power Electron. 25 1556

    [7]

    Tse C K, Bernardo M D 2002 Proc. IEEE 90 768

    [8]

    Giral R, El Aroudi A, Martinez-Salamero L, Leyva R, Maixe J 2001 Electron. Lett. 37 274

    [9]

    El Aroudi A, Rodriguez E, Leyva R, Alarcon E 2010 IEEE Trans. Circuits Syst. II, Exp. Briefs 57 218

    [10]

    Bao B C, Xu J P, Liu Z 2008 J. Univ. of Electronic Science and Technology of China 37 397 (in Chinese) [包伯成, 许建平, 刘中2008 电子科技大学学报 37 397]

    [11]

    Dai D, Ma X K, Li X F 2003 Acta Phys. Sin. 52 2729 (in Chinese) [戴栋, 马西奎, 李小峰 2003 物理学报 52 2729]

    [12]

    Banerjee S, Parui S, Gupta A 2004 IEEE Trans. Circuits and Systems-II 51 649

    [13]

    Parui S, Banerjee S 2003 IEEE Trans. Circuits and Systems -I 50 1464

    [14]

    Saito T, Kabe T, Ishikawa Y, Matsuoka Y, Torikai H 2007 Int. J. Bifur. Chaos 17 3373

    [15]

    Bao B C, Zhou G H, Xu J P, Liu Z 2011 IEEE Trans. Power Electron. 26 1968

    [16]

    Bao B C, Xu J P, Liu Z 2009 Chin. Phys. B 18 4742

    [17]

    Bao B C, Xu J P, Liu Z 2009 Acta Phys. Sin. 58 2949 (in Chinese) [包伯成, 许建平, 刘中 2009 物理学报 58 2949]

    [18]

    Xie F, Yang R, Zhang B 2010 Acta Phys. Sin. 59 8393 (in Chinese) [谢帆, 杨汝, 张波 2010 物理学报 59 8393]

    [19]

    Elaydi S N 2008 Discrete Chaos With Applications in Science and Engineering (Chapman & Hall/CRC)

    [20]

    Chen Y F, Tse C K, Qiu S S, Lindenmüller L, Schwarz W 2008 IEEE Trans. Circuits Syst. -I 55 3335

  • [1] Wu Song-Rong, He Sheng-Zhong, Xu Jian-Ping, Zhou Guo-Hua, Wang Jin-Ping. Dynamical modeling and multi-period behavior analysis of voltage-mode bi-frequency controlled switching converter. Acta Physica Sinica, 2013, 62(21): 218403. doi: 10.7498/aps.62.218403
    [2] Sha Jin, Bao Bo-Cheng, Xu Jian-Ping, Gao Yu. Dynamical modeling and border collision bifurcation in pulse train controlled discontinuous conduction mode buck converter. Acta Physica Sinica, 2012, 61(12): 120501. doi: 10.7498/aps.61.120501
    [3] Yang Tan, Jin Yue-Hui, Cheng Shi-Duan. Border collision bifurcation and chaotic control of discrete feedback transmission control protocol-random early detection system. Acta Physica Sinica, 2009, 58(8): 5224-5237. doi: 10.7498/aps.58.5224
    [4] Zhong Shu, Sha Jin, Xu Jian-Ping, Xu Li-Jun, Zhou Guo-Hua. Low-frequency oscillation of continuous conduction mode buck converter with pulse skipped modulation. Acta Physica Sinica, 2014, 63(19): 198401. doi: 10.7498/aps.63.198401
    [5] He Sheng-Zhong, Zhou Guo-Hua, Xu Jian-Ping, Wu Song-Rong, Chen Li. Effect of output capacitance time-constant on dynamic characteristics of V2-controlled buck converter. Acta Physica Sinica, 2014, 63(13): 130501. doi: 10.7498/aps.63.130501
    [6] Liu Xiao-Tian, Zhou Guo-Hua, Li Zhen-Hua, Chen Xing. Discrete iterative-map modeling and dynamical analysis of digital voltage-mode controlled buck converter with dual-edge modulation. Acta Physica Sinica, 2015, 64(22): 228401. doi: 10.7498/aps.64.228401
    [7] Qin Ming, Xu Jian-Ping. Study of multilevel pulse train control technique for switching converters. Acta Physica Sinica, 2009, 58(11): 7603-7612. doi: 10.7498/aps.58.7603
    [8] Li Zhen-Hua, Zhou Guo-Hua, Liu Xiao-Tian, Leng Min-Rui. Dynamical modeling and analysis of buck converter operating in pseudo-continuous conduction mode. Acta Physica Sinica, 2015, 64(18): 180501. doi: 10.7498/aps.64.180501
    [9] Liu Zhong, Bao Bo-Cheng, Zhou Guo-Hua, Xu Jian-Ping. Dynamical modeling and analysis of current mode controlled switching converter with ramp compensation. Acta Physica Sinica, 2010, 59(6): 3769-3777. doi: 10.7498/aps.59.3769
    [10] Qin Ming, Xu Jian-Ping, Gao Yu, Wang Jin-Ping. Current referenced pulse train control technique applied to switching converter. Acta Physica Sinica, 2012, 61(3): 030204. doi: 10.7498/aps.61.030204
  • Citation:
Metrics
  • Abstract views:  3514
  • PDF Downloads:  586
  • Cited By: 0
Publishing process
  • Received Date:  31 March 2012
  • Accepted Date:  06 June 2012
  • Published Online:  20 November 2012

Dynamics of current controlled switching converters under wide circuit parameter variation

  • 1. School of Information Science and Engineering, Changzhou University, Changzhou 213164, China;
  • 2. School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 51177140), the Natural Science Foundation of Changzhou, Jiangsu Province, China (Grant No. CJ20120004), and the Scientific Research Foundation of Zhejiang Provincial Education Department, China (Grant No. Y201225848).

Abstract: With current-controlled buck-boost converter used as an example, through a detailed description of the switch state of the switching converter under wide circuit parameter variation, such as input voltage and load resistance variation, two inductor current borders in the current controlled switching converter are derived and an accurate discrete-time model is established. The validation of the discrete-time model is verified by a piecewise-linear model. Based on the discrete-time model, the complex dynamical behaviors existing in switching converter, such as period-double bifurcation, border-collision bifurcation, robust chaos and intermittent chaos, etc., are revealed. By formulating the Jacobian, the maximum Lyapunov exponent and the movement trajectories of eigvalues with the variations of circuit parameters are obtained. By utilizing the parameter-space maps, the operation-state regions corresponding to circuit parameter regions are estimated. Finally, an experimental setup is implemented, the corresponding observation results are consistent with those of theory analyses. In this paper the dynamics theory in switching converters is investigated systematically; the analysis methods and research results are helpful for designing and controlling switching converters.

Reference (20)

Catalog

    /

    返回文章
    返回