Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Extended Holme-Kim network model and synchronizability

Wang Dan Jing Yuan-Wei Hao Bin-Bin

Extended Holme-Kim network model and synchronizability

Wang Dan, Jing Yuan-Wei, Hao Bin-Bin
PDF
Get Citation
  • The relations between two highly clustered scale-free network evolution mechanisms and synchronizability are studied in this paper. Firstly, we propose an extended Holme and Kim (EHK) model with adjustive clustering coefficients and power-law exponent based on the Holme and Kim (HK) model. Triad formation mechanism is extended among old nodes compared with the HK model. And the following shortages of HK modle are settled: there is no link evolution in old nodes and the numbers of links of a new node adding to network is fixed. Secondly, the effect of triad formation on synchronizability in an unweighted network is investigated. Finally, simulation results show that the triad formation mechanism can weaken the synchronizability of both types of networks.
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 61203152, 61104029), and the Science Research Foundation for Doctor of Liaoning Province of China (Grant No. 2021040).
    [1]

    Lü L, Li G, Cai Y 2008 Acta Phys. Sin. 57 7517(in Chinese) [吕翎, 李钢, 柴元2008物理学报 57 7517]

    [2]

    Yang X K, Cai L, Zhao X H, Feng Z W 2008 Acta Phys. Sin. 59 3740 (in Chinese) [杨晓阔, 蔡理, 赵晓辉, 冯朝文2010物理学报 59 3740]

    [3]

    Li J, Wang B H, Jiang P Q, Zhou T, Wang W X 2006 Acta Phys. Sin. 55 4051 (in Chinese) [李季, 汪秉宏, 蒋品群, 周涛, 王文旭2006物理学报 55 4051]

    [4]

    Watts D J, Strogatz S H 1998 Nature (London) 393 440

    [5]

    Barabási A L, Albert R 1999 Science 286 509

    [6]

    Gao J X, Havlin S, Xu X M, Stanley E H 2011 Phys. Rev. E 84 046115

    [7]

    Yuan W J, Zhou C S 2011 Phys. Rev. E 84 016116

    [8]

    Zeng A, Son S W, Yeung C H, Fan Y, Di Z 2011 Phys. Rev. E 83 045101

    [9]

    Watanabe T, Masuda N 2010 Phys. Rev. E 82 046102

    [10]

    Gorochowski T E, Bernardo M D, Grierson C S 2010 Phys. Rev. E 81 056212

    [11]

    Zhu J F, Zhao M, Yu W W, Zhou C S, Wang B H 2010 Phys. Rev. E 81 026201

    [12]

    Holme P, Kim B J 2002 Phys. Rev. E 65 026107

    [13]

    Li W G, Wang L H, Chen M F 2009 Comp. Eng. 35 121 (in Chinese) [李稳国, 王力虎, 陈明芳 2009计算机工程 35 121]

    [14]

    Zhang Z Z, Rong L L, Wang B, Zhou S G, Guan J H 2007 Physica A 380 639

    [15]

    Pan X F, Wang X F 2006 Acta Phys. Sin. 55 4058 (in Chinese) [潘灶烽, 汪小帆2006物理学报 55 4058]

    [16]

    Wu X, Wang B H, Zhou T, Wang W X, Zhao M, Yang H J 2006 Chin. Phys. Lett. 23 1046

    [17]

    Zhou T, Xiao W K, Ren J, Wang B H 2007 Complex Syst. Complex Sci. 4 10 (in Chinese) [周涛, 肖伟科, 任捷, 汪秉宏 2007复杂系统与复杂性科学 4 10]

    [18]

    Xiao W K, Ren J, Feng Q, Song Z W, Zhu M X, Yang H F, Jin H Y, Wang B H, Zhou T 2007 Phys. Rev. E 76 037102

    [19]

    Yang H X, Wang B H, Liu J G, Han X P, Zhou T 2008 Chin. Phys. Lett. 25 2718

    [20]

    Cui A X, Fu Y, Shang M S, Chen R B, Zhou T 2011 Acta Phys.Sin. 60 038901 (in Chinese) [崔爱香, 傅彦, 尚明生, 陈端兵, 周涛2011物理学报 60 038901]

    [21]

    Barrat A, Barthelemy M, Vespignani A 2004 Phys. Rev. Lett. 92 228701

    [22]

    Wang B, Zhou T, Xiu Z L, Kim B J 2007 Eur. Phys. J. B 60 89

  • [1]

    Lü L, Li G, Cai Y 2008 Acta Phys. Sin. 57 7517(in Chinese) [吕翎, 李钢, 柴元2008物理学报 57 7517]

    [2]

    Yang X K, Cai L, Zhao X H, Feng Z W 2008 Acta Phys. Sin. 59 3740 (in Chinese) [杨晓阔, 蔡理, 赵晓辉, 冯朝文2010物理学报 59 3740]

    [3]

    Li J, Wang B H, Jiang P Q, Zhou T, Wang W X 2006 Acta Phys. Sin. 55 4051 (in Chinese) [李季, 汪秉宏, 蒋品群, 周涛, 王文旭2006物理学报 55 4051]

    [4]

    Watts D J, Strogatz S H 1998 Nature (London) 393 440

    [5]

    Barabási A L, Albert R 1999 Science 286 509

    [6]

    Gao J X, Havlin S, Xu X M, Stanley E H 2011 Phys. Rev. E 84 046115

    [7]

    Yuan W J, Zhou C S 2011 Phys. Rev. E 84 016116

    [8]

    Zeng A, Son S W, Yeung C H, Fan Y, Di Z 2011 Phys. Rev. E 83 045101

    [9]

    Watanabe T, Masuda N 2010 Phys. Rev. E 82 046102

    [10]

    Gorochowski T E, Bernardo M D, Grierson C S 2010 Phys. Rev. E 81 056212

    [11]

    Zhu J F, Zhao M, Yu W W, Zhou C S, Wang B H 2010 Phys. Rev. E 81 026201

    [12]

    Holme P, Kim B J 2002 Phys. Rev. E 65 026107

    [13]

    Li W G, Wang L H, Chen M F 2009 Comp. Eng. 35 121 (in Chinese) [李稳国, 王力虎, 陈明芳 2009计算机工程 35 121]

    [14]

    Zhang Z Z, Rong L L, Wang B, Zhou S G, Guan J H 2007 Physica A 380 639

    [15]

    Pan X F, Wang X F 2006 Acta Phys. Sin. 55 4058 (in Chinese) [潘灶烽, 汪小帆2006物理学报 55 4058]

    [16]

    Wu X, Wang B H, Zhou T, Wang W X, Zhao M, Yang H J 2006 Chin. Phys. Lett. 23 1046

    [17]

    Zhou T, Xiao W K, Ren J, Wang B H 2007 Complex Syst. Complex Sci. 4 10 (in Chinese) [周涛, 肖伟科, 任捷, 汪秉宏 2007复杂系统与复杂性科学 4 10]

    [18]

    Xiao W K, Ren J, Feng Q, Song Z W, Zhu M X, Yang H F, Jin H Y, Wang B H, Zhou T 2007 Phys. Rev. E 76 037102

    [19]

    Yang H X, Wang B H, Liu J G, Han X P, Zhou T 2008 Chin. Phys. Lett. 25 2718

    [20]

    Cui A X, Fu Y, Shang M S, Chen R B, Zhou T 2011 Acta Phys.Sin. 60 038901 (in Chinese) [崔爱香, 傅彦, 尚明生, 陈端兵, 周涛2011物理学报 60 038901]

    [21]

    Barrat A, Barthelemy M, Vespignani A 2004 Phys. Rev. Lett. 92 228701

    [22]

    Wang B, Zhou T, Xiu Z L, Kim B J 2007 Eur. Phys. J. B 60 89

  • [1] Wang Dan, Hao Bin-Bin. A weighted scale-free network model with high clustering and its synchronizability. Acta Physica Sinica, 2013, 62(22): 220506. doi: 10.7498/aps.62.220506
    [2] Wang Dan, Jin Xiao-Zheng. On weightd scale-free network model with tunable clustering and congesstion. Acta Physica Sinica, 2012, 61(22): 228901. doi: 10.7498/aps.61.228901
    [3] Pan Zao-Feng, Wang Xiao-Fan. A weighted scale-free network model with large-scale tunable clustering. Acta Physica Sinica, 2006, 55(8): 4058-4064. doi: 10.7498/aps.55.4058
    [4] Wang Dan, Jing Yuan-Wei, Hao Bin-Bin. Effect of weighted scheme on synchronizability based on different network structures. Acta Physica Sinica, 2012, 61(17): 170513. doi: 10.7498/aps.61.170513
    [5] Sun Juan, Li Xiao-Xia, Zhang Jin-Hao, Shen Yu-Zhuo, Li Yan-Yu. Synchronizability and eigenvalues of multilayer star networks through unidirectionally coupling. Acta Physica Sinica, 2017, 66(18): 188901. doi: 10.7498/aps.66.188901
    [6] Ma Xiao-Juan, Wang Yan, Zheng Zhi-Gang. Effect of leaf nodes on synchronizability of complex networks. Acta Physica Sinica, 2009, 58(7): 4426-4430. doi: 10.7498/aps.58.4426
    [7] Liu Zhong-Xin, Chen Zeng-Qiang, Yuan Zhu-Zhi, Pei Wei-Dong. Study of epidemic spreading on scale-free networks with finite maximum dissemination. Acta Physica Sinica, 2008, 57(11): 6777-6785. doi: 10.7498/aps.57.6777
    [8] Feng Cong, Zou Yan-Li, Wei Fang-Qiong. Synchronization processes in clustered networks with different inter-cluster couplings. Acta Physica Sinica, 2013, 62(7): 070506. doi: 10.7498/aps.62.070506
    [9] Zhu Ting-Xiang, Wu Ye, Xiao Jing-Hua. An efficient adaptive method of improving the synchronization of complex networks. Acta Physica Sinica, 2012, 61(4): 040502. doi: 10.7498/aps.61.040502
    [10] Yang Qing-Lin, Wang Li-Fu, Li Huan, Yu Mu-Zhou. A spectral coarse graining algorithm based on relative distance. Acta Physica Sinica, 2019, 68(10): 100501. doi: 10.7498/aps.68.20181848
  • Citation:
Metrics
  • Abstract views:  4191
  • PDF Downloads:  726
  • Cited By: 0
Publishing process
  • Received Date:  02 December 2011
  • Accepted Date:  05 June 2012
  • Published Online:  20 November 2012

Extended Holme-Kim network model and synchronizability

  • 1. Key Laboratory of Manufacturing Industrial Integrated Automation, Shenyang University, Shenyang 110044, China;
  • 2. College of Information Science and Engineering, Northeastern University, Shenyang 110004, China
Fund Project:  Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 61203152, 61104029), and the Science Research Foundation for Doctor of Liaoning Province of China (Grant No. 2021040).

Abstract: The relations between two highly clustered scale-free network evolution mechanisms and synchronizability are studied in this paper. Firstly, we propose an extended Holme and Kim (EHK) model with adjustive clustering coefficients and power-law exponent based on the Holme and Kim (HK) model. Triad formation mechanism is extended among old nodes compared with the HK model. And the following shortages of HK modle are settled: there is no link evolution in old nodes and the numbers of links of a new node adding to network is fixed. Secondly, the effect of triad formation on synchronizability in an unweighted network is investigated. Finally, simulation results show that the triad formation mechanism can weaken the synchronizability of both types of networks.

Reference (22)

Catalog

    /

    返回文章
    返回