Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical simulation of enhanced glow discharge plasma immersion ion implantation using three-dimensional PIC/MC model

He Fu-Shun Li Liu-He Li Fen Dun Dan-Dan Tao Chan-Cai

Numerical simulation of enhanced glow discharge plasma immersion ion implantation using three-dimensional PIC/MC model

He Fu-Shun, Li Liu-He, Li Fen, Dun Dan-Dan, Tao Chan-Cai
PDF
Get Citation
  • Enhanced glow discharge plasma immersion ion implantation is self-consistently simulated using a three-dimensional PIC/MC model. The information about ion counts, space potential, plasma density and ion incident dose is obtained. The results show that the sheath has fully expanded at 5 μs. There is a stable equilibrium of ion counts at 15 μs, which corroborates the characteristic of self-sustaining glow discharge of EGD-PIII. In the space just below anode where is found a highest plasma density, verifying the electron focusing effect. The rate of implantation is steady and the incident dose is relatively uniform except at the rim of target. A higher pulse negative bias may increase the injection rate but reduce the dose uniformity at the same time.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11075012).
    [1]

    Conrad J R, Radtke J L, Dodd R A, Worzala F G, Tran N C 1987 J. Appl. Phys. 62 4591

    [2]

    Tendys J, Donnelly I J, Kenny M J, Pollock J T A 1988 Appl. Phys. Lett. 53 2143

    [3]

    Li X C, Wang Y N 2004 Acta Phys. Sin. 53 2667 (in Chinese) [李雪春, 王友年 2004 物理学报 53 2666]

    [4]

    Chu P K 2004 J. Vac. Sci. Technol. B 22 289

    [5]

    Walter K C 1994 J. Vac. Sci. Technol. B 12 945

    [6]

    Li L H, Chu P K 2007 Surf. Coat. Technol. 201 6516

    [7]

    Chu P K, Li L H U.S. Patent 8 119 208 B2 [2012-02-21]

    [8]

    Li L H, Poon R W Y, Kwok S C H, Chu P K, Wu Y Q, Zhang Y H 2003 Rev. Sci. Instrum. 74 4301

    [9]

    Lu Q Y, Li L H, Fu R K Y, Chu P K 2008 Phys. Lett. A 372 6183

    [10]

    Li L H ,Wu Y Q, Zhang Y H, Fu R K Y, Chu P K 2005 J. Appl. Phys. 97 113301

    [11]

    Lu Q Y, Li L H, Li J H, Fu R K Y, Chu P K 2009 Appl. Phys. Lett. 95 061503

    [12]

    Lu Q Y, Li L H, Fu R K Y, Chu P K 2008 J. Appl. Phys. 104 043303

    [13]

    Li L H, Lu Q Y, Fu R K Y, Chu P K 2009 Nucl. Instrum. Methods. Phys. Res. Sect. B 267 1696

    [14]

    Lu Q Y, Wang Z, Li L H, Fu R K Y, Chu P K 2010 J. Appl. Phys. 108 033304

    [15]

    Wang Z, Zhu Y, Li L H, Lu Q Y, He F S, Dun D D, Li F, Fu R K Y, Chu P K 2011 Riew. Sci. Instrum. 82 023503

    [16]

    Kwok D T K, Lu Q Y, Li L H, Li J H, Fu R K Y, Chu P K 2008 Appl. Phys. Lett. 93 091501

    [17]

    Li L H, Li J H, Kwok D T K, Wang Z, Chu P K 2009 J. Appl. Phys. 106 013313

    [18]

    En W, Cheung N W 1996 IEEE. Trans. Plasma Sci. 24 1184

    [19]

    Kwok DTK, Li J H, Ma X B, Chu P K 2010 J. Phys. D: Appl. Phys. 43 095203

    [20]

    Wang P, Tian X B, Wang Z J, Gong C Z , Y S Q 2011 Acta Phys. Sin. 60 085206 (in Chinese) [王蓬, 田修波, 汪志健, 巩春志, 杨士勤 2011 物理学报 60 085206]

    [21]

    Kwok D T K 2006 IEEE. Trans. Plasma. Sci. 34 1059

    [22]

    Shao F Q 2002 Plasma Particle Simulation (Beijing: Science Press) p28 (in Chinese) [邵福球 2002 等离子体粒子模拟 (北京:科学出版社) 第28页]

    [23]

    Yang C, Liu D G, Wang X M, Liu L Q, Wang X Q, Liu S G Acta Phys. Sin. 61 045204 (in Chinese) [杨超, 刘大刚, 王小敏, 刘腊群, 王学琼, 刘盛刚 2012 物理学报 61 045204]

    [24]

    Vahedi V, Surendra M 1995 Comput. Phys. Commun. 87 179

    [25]

    Brusa R S, Karwasz G P, Zecca A 1996 Z. Phys. D: At. Mol. Clusters. 38 279

    [26]

    Li L H, Fu R K Y, Poon R W Y, Kwok S C H, Chu P K, Wu Y Q, Zhang Y H, Cai X, Chen Q L, Xu M 2004 Surf. Coat. Technol. 186 165

  • [1]

    Conrad J R, Radtke J L, Dodd R A, Worzala F G, Tran N C 1987 J. Appl. Phys. 62 4591

    [2]

    Tendys J, Donnelly I J, Kenny M J, Pollock J T A 1988 Appl. Phys. Lett. 53 2143

    [3]

    Li X C, Wang Y N 2004 Acta Phys. Sin. 53 2667 (in Chinese) [李雪春, 王友年 2004 物理学报 53 2666]

    [4]

    Chu P K 2004 J. Vac. Sci. Technol. B 22 289

    [5]

    Walter K C 1994 J. Vac. Sci. Technol. B 12 945

    [6]

    Li L H, Chu P K 2007 Surf. Coat. Technol. 201 6516

    [7]

    Chu P K, Li L H U.S. Patent 8 119 208 B2 [2012-02-21]

    [8]

    Li L H, Poon R W Y, Kwok S C H, Chu P K, Wu Y Q, Zhang Y H 2003 Rev. Sci. Instrum. 74 4301

    [9]

    Lu Q Y, Li L H, Fu R K Y, Chu P K 2008 Phys. Lett. A 372 6183

    [10]

    Li L H ,Wu Y Q, Zhang Y H, Fu R K Y, Chu P K 2005 J. Appl. Phys. 97 113301

    [11]

    Lu Q Y, Li L H, Li J H, Fu R K Y, Chu P K 2009 Appl. Phys. Lett. 95 061503

    [12]

    Lu Q Y, Li L H, Fu R K Y, Chu P K 2008 J. Appl. Phys. 104 043303

    [13]

    Li L H, Lu Q Y, Fu R K Y, Chu P K 2009 Nucl. Instrum. Methods. Phys. Res. Sect. B 267 1696

    [14]

    Lu Q Y, Wang Z, Li L H, Fu R K Y, Chu P K 2010 J. Appl. Phys. 108 033304

    [15]

    Wang Z, Zhu Y, Li L H, Lu Q Y, He F S, Dun D D, Li F, Fu R K Y, Chu P K 2011 Riew. Sci. Instrum. 82 023503

    [16]

    Kwok D T K, Lu Q Y, Li L H, Li J H, Fu R K Y, Chu P K 2008 Appl. Phys. Lett. 93 091501

    [17]

    Li L H, Li J H, Kwok D T K, Wang Z, Chu P K 2009 J. Appl. Phys. 106 013313

    [18]

    En W, Cheung N W 1996 IEEE. Trans. Plasma Sci. 24 1184

    [19]

    Kwok DTK, Li J H, Ma X B, Chu P K 2010 J. Phys. D: Appl. Phys. 43 095203

    [20]

    Wang P, Tian X B, Wang Z J, Gong C Z , Y S Q 2011 Acta Phys. Sin. 60 085206 (in Chinese) [王蓬, 田修波, 汪志健, 巩春志, 杨士勤 2011 物理学报 60 085206]

    [21]

    Kwok D T K 2006 IEEE. Trans. Plasma. Sci. 34 1059

    [22]

    Shao F Q 2002 Plasma Particle Simulation (Beijing: Science Press) p28 (in Chinese) [邵福球 2002 等离子体粒子模拟 (北京:科学出版社) 第28页]

    [23]

    Yang C, Liu D G, Wang X M, Liu L Q, Wang X Q, Liu S G Acta Phys. Sin. 61 045204 (in Chinese) [杨超, 刘大刚, 王小敏, 刘腊群, 王学琼, 刘盛刚 2012 物理学报 61 045204]

    [24]

    Vahedi V, Surendra M 1995 Comput. Phys. Commun. 87 179

    [25]

    Brusa R S, Karwasz G P, Zecca A 1996 Z. Phys. D: At. Mol. Clusters. 38 279

    [26]

    Li L H, Fu R K Y, Poon R W Y, Kwok S C H, Chu P K, Wu Y Q, Zhang Y H, Cai X, Chen Q L, Xu M 2004 Surf. Coat. Technol. 186 165

  • [1] Wang Peng, Tian Xiu-Bo, Wang Zhi-Jian, Gong Chun-Zhi, Yang Shi-Qin. Numerical simulation of plasma immersion ion implantation for cubic target with finite length using three-dimensional particle-in-cell model. Acta Physica Sinica, 2011, 60(8): 085206. doi: 10.7498/aps.60.085206
    [2] Pang Xue-Xia, Deng Ze-Chao, Jia Peng-Ying, Liang Wei-Hua. Numerical simulation of NOx species behaviour in atmosphere plasma. Acta Physica Sinica, 2011, 60(12): 125201. doi: 10.7498/aps.60.125201
    [3] Jiang Chun-Hua, Zhao Zheng-Yu. Numerical simulation of recombination rate effect on development of equatorial plasma bubbles. Acta Physica Sinica, 2019, 68(19): 199401. doi: 10.7498/aps.68.20190173
    [4] Yuan Xing-Qiu, Li Hui, Zhao Tai-Zhe, Wang Fei, Guo Wen-Kang, Xu Ping. Numerical study of supersonic plasma torch. Acta Physica Sinica, 2004, 53(3): 788-792. doi: 10.7498/aps.53.788
    [5] Zhou Xiao-Jun, Guo Wen-Qiong, Zhang Xiong-Jun, Sui Zhan, Wu Deng-Sheng. Simulation electro-optic switch of plasma-electrode Pockels cells driven by one-pulse process. Acta Physica Sinica, 2006, 55(7): 3519-3523. doi: 10.7498/aps.55.3519
    [6] Yu Ming-Hao. Numerical investigation on interaction mechanisms between flow field and electromagnetic field for nonequilibrium inductively coupled plasma. Acta Physica Sinica, 2019, 68(18): 185202. doi: 10.7498/aps.68.20190865
    [7] Pang Xue-Xia, Deng Ze-Chao, Dong Li-Fang. Numerical simulation of particle species behavior in atmosphere plasmas with different ionization degree. Acta Physica Sinica, 2008, 57(8): 5081-5088. doi: 10.7498/aps.57.5081
    [8] Gao Qi, Zhang Chuan-Fei, Zhou Lin, Li Zheng-Hong, Wu Ze-Qing, Lei Yu, Zhang Chun-Lai, Zu Xiao-Tao. Simulation of Z-pinch Al plasma radiation and correction with considering superposition effect. Acta Physica Sinica, 2014, 63(12): 125202. doi: 10.7498/aps.63.125202
    [9] Ouyang Jian-Ming, Shao Fu-Qiu, Liu Jian-Quan, Wang Long, Fang Tong-Zhen. Numerical simulation of chemical processes in one-dimensional atmospheric plasmas. Acta Physica Sinica, 2006, 55(9): 4974-4979. doi: 10.7498/aps.55.4974
    [10] Wei Wei, Zhang Li-Yuan, Gu Zhao-Lin. Particle charging mechanism and numerical methodology for industrial applications. Acta Physica Sinica, 2015, 64(16): 168301. doi: 10.7498/aps.64.168301
  • Citation:
Metrics
  • Abstract views:  3449
  • PDF Downloads:  533
  • Cited By: 0
Publishing process
  • Received Date:  30 March 2012
  • Accepted Date:  07 June 2012
  • Published Online:  20 November 2012

Numerical simulation of enhanced glow discharge plasma immersion ion implantation using three-dimensional PIC/MC model

  • 1. School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 11075012).

Abstract: Enhanced glow discharge plasma immersion ion implantation is self-consistently simulated using a three-dimensional PIC/MC model. The information about ion counts, space potential, plasma density and ion incident dose is obtained. The results show that the sheath has fully expanded at 5 μs. There is a stable equilibrium of ion counts at 15 μs, which corroborates the characteristic of self-sustaining glow discharge of EGD-PIII. In the space just below anode where is found a highest plasma density, verifying the electron focusing effect. The rate of implantation is steady and the incident dose is relatively uniform except at the rim of target. A higher pulse negative bias may increase the injection rate but reduce the dose uniformity at the same time.

Reference (26)

Catalog

    /

    返回文章
    返回