Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study on phase analysis of nanoparticles by high-voltage electrical explosion method of copper wire

Li Shi-Wen Feng Guo-Ying Li Wei Han Jing-Hua Zhou Sheng-Yang Yin Jia-Jia Yang Chao Zhou Shou-Huan

Study on phase analysis of nanoparticles by high-voltage electrical explosion method of copper wire

Li Shi-Wen, Feng Guo-Ying, Li Wei, Han Jing-Hua, Zhou Sheng-Yang, Yin Jia-Jia, Yang Chao, Zhou Shou-Huan
PDF
Get Citation
  • Copper nanoparticles are produced by high-voltage electrical explosion of copper wires. The high-voltage breakdown experimental setup for copper is built. The morphology and composition of the breakdown material are tested by the transmission electron microscopy (TEM) and scanning electron microscopy (SEM), and X-ray diffractometry (XRD) and energy dispersive spectroscopy(EDS) methods, respectively. Based on the morphology, size distribution, elemental spectrum (EDS), and XRD analysis of the breakdown material, the phase characteristics of high-voltage breakdown copper wire are studied. The results show that wire is fully ionized under high pressure, forming a filamentous distribution which is composed of condensation of nanoparticles. The diameters of copper nanoparticles are between 30 nm and 60 nm. The nanoparticles product is composed of Cu and O elements. The product is a mixture of metallic copper, cupric oxide and cuprous oxide. The particle size and its product composition are controlled by varying length and diameter of the copper wire, discharge voltage, etc.
    • Funds: Project supported by the Major Program of the National Natural Science Foundation of China (Grant No.60890200) and the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No.10976017).
    [1]

    Yang P, Liao N B, Li C, Shang S H 2009 International Journal of Nonlinear Sciences & Numerical Simulation 10 483

    [2]

    Klas M, Matejcik S, Radjenović B, Radmilovi -Radjienović M 2011 Phys. Scr. 83 45503

    [3]

    Li X J, Wang Z L, Yan H H, Wang X H, Zhang Y J 2010 Chinese Journal of High Pressure Physics 24 368 (in Chinese) [李晓杰, 王占磊, 闫鸿浩, 王小红, 张越举 2010 高压物理学报 24 368]

    [4]

    Kim W, Park J S, Suh C Y, Ahn J G, Lee J C 2008 Journal of Alloys and Compounds 465 4

    [5]

    Xiang J, Song F Z, Shen X Q, Chu Y Q 2010 Acta Phys. Sin. 59 4794 (in Chinese) [向军, 宋福展, 沈湘黔, 褚艳秋 2010 物理学报 59 4794]

    [6]

    Fan Z L, Zheng F, SiTu J C 2011 The Chinese Journal of Nonferrous Metals 20 545 (in Chinese) [樊志良, 郑峰, 司徒健超 2011 中国有色金属学报 20 545]

    [7]

    Makhlouf S A, S, A. Kassem M, M. A Abdel R 2009 J. Mater. Sci. 44 3438

    [8]

    Li T, Chen Z P, Su Y l, Su L, Zhang J C 2009 J. Mater. Sci. 44 6149

    [9]

    Bac L H, Ryu H J, Kim B K, Kim J S, Kim J C 2011 J. Nanosci. Nanotechnol. 11 6433

    [10]

    Bagazeev A V, Kotov Y A, Medvedev A I, Azarkevich E I, Demina T M, Murzakaev A M, Timoshenkova O R 2010 Chemistry and Materials Science 5 656

    [11]

    Wu Y, Sun N C, Feng G Y, Yin S M, Liao H, Zhou C M 2009 Laser Journal 30 17 (in Chinese) [吴颖, 孙年春, 冯国英, 尹升茂, 廖海, 周传明 2009 激光杂志 30 17]

    [12]

    Murali R, Yang Y X, Brenner K, Beck T, Meindl D J 2009 Appl. Phys. Lett. 94 243114

    [13]

    Zhu Y C, Luo G X, Fang X, Chen Y 2011 Explosion and Shock Waves 31 664 (in Chinese) [朱翼超, 罗根新, 方向, 陈宇 2011 爆炸与冲击 31 664]

    [14]

    Yung G S, Kim B J, Lee N Y, Kim B M, Yeom S J, Kwak N J, Joo Y C 2012 Microelectronic Engineering 89 58

    [15]

    Jiang J H, Wang G Y, Yang Y 2008 Acta Phys. Sin. 57 1123 (in Chinese) [蒋吉昊, 王桂吉, 杨宇 2008 物理学报 57 1123]

    [16]

    Mao Z G 2009 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [毛志国 2009 博士学位论文 (北京: 清华大学)]

  • [1]

    Yang P, Liao N B, Li C, Shang S H 2009 International Journal of Nonlinear Sciences & Numerical Simulation 10 483

    [2]

    Klas M, Matejcik S, Radjenović B, Radmilovi -Radjienović M 2011 Phys. Scr. 83 45503

    [3]

    Li X J, Wang Z L, Yan H H, Wang X H, Zhang Y J 2010 Chinese Journal of High Pressure Physics 24 368 (in Chinese) [李晓杰, 王占磊, 闫鸿浩, 王小红, 张越举 2010 高压物理学报 24 368]

    [4]

    Kim W, Park J S, Suh C Y, Ahn J G, Lee J C 2008 Journal of Alloys and Compounds 465 4

    [5]

    Xiang J, Song F Z, Shen X Q, Chu Y Q 2010 Acta Phys. Sin. 59 4794 (in Chinese) [向军, 宋福展, 沈湘黔, 褚艳秋 2010 物理学报 59 4794]

    [6]

    Fan Z L, Zheng F, SiTu J C 2011 The Chinese Journal of Nonferrous Metals 20 545 (in Chinese) [樊志良, 郑峰, 司徒健超 2011 中国有色金属学报 20 545]

    [7]

    Makhlouf S A, S, A. Kassem M, M. A Abdel R 2009 J. Mater. Sci. 44 3438

    [8]

    Li T, Chen Z P, Su Y l, Su L, Zhang J C 2009 J. Mater. Sci. 44 6149

    [9]

    Bac L H, Ryu H J, Kim B K, Kim J S, Kim J C 2011 J. Nanosci. Nanotechnol. 11 6433

    [10]

    Bagazeev A V, Kotov Y A, Medvedev A I, Azarkevich E I, Demina T M, Murzakaev A M, Timoshenkova O R 2010 Chemistry and Materials Science 5 656

    [11]

    Wu Y, Sun N C, Feng G Y, Yin S M, Liao H, Zhou C M 2009 Laser Journal 30 17 (in Chinese) [吴颖, 孙年春, 冯国英, 尹升茂, 廖海, 周传明 2009 激光杂志 30 17]

    [12]

    Murali R, Yang Y X, Brenner K, Beck T, Meindl D J 2009 Appl. Phys. Lett. 94 243114

    [13]

    Zhu Y C, Luo G X, Fang X, Chen Y 2011 Explosion and Shock Waves 31 664 (in Chinese) [朱翼超, 罗根新, 方向, 陈宇 2011 爆炸与冲击 31 664]

    [14]

    Yung G S, Kim B J, Lee N Y, Kim B M, Yeom S J, Kwak N J, Joo Y C 2012 Microelectronic Engineering 89 58

    [15]

    Jiang J H, Wang G Y, Yang Y 2008 Acta Phys. Sin. 57 1123 (in Chinese) [蒋吉昊, 王桂吉, 杨宇 2008 物理学报 57 1123]

    [16]

    Mao Z G 2009 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [毛志国 2009 博士学位论文 (北京: 清华大学)]

  • [1] Sun Wei-Feng, Wang Xuan. Molecular dynamics simulation study of polyimide/copper-nanoparticle composites. Acta Physica Sinica, 2013, 62(18): 186202. doi: 10.7498/aps.62.186202
    [2] Liang Yi-Ran, Liang Qing. Molecular simulation of interaction between charged nanoparticles and phase-separated biomembranes containning charged lipids. Acta Physica Sinica, 2019, 68(2): 028701. doi: 10.7498/aps.68.20181891
    [3] Li Lin, Wang Xuan, Sun Wei-Feng, Lei Qing-Quan. Molecular dynamics simulation of polyethylene/silver-nanoparticle composites. Acta Physica Sinica, 2013, 62(10): 106201. doi: 10.7498/aps.62.106201
    [4] Huang Cong-Liang, Feng Yan-Hui, Zhang Xin-Xin, Li Jing, Wang Ge, Chou Ai-Hui. Thermal conductivity of metallic nanoparticle. Acta Physica Sinica, 2013, 62(2): 026501. doi: 10.7498/aps.62.026501
    [5] Zhang Kai, Liu Yan-Hua, Gan Fu-Jun. Nucleation and coagulation of nanoparticles in a planar jet. Acta Physica Sinica, 2010, 59(6): 4084-4092. doi: 10.7498/aps.59.4084
    [6] Wang Xin-Liang, Di Qin-Feng, Zhang Ren-Liang, Ding Wei-Peng, Gong Wei, Chen Yi-Chong. The strong hydrophobic properties on nanoparticles adsorbed core surfaces. Acta Physica Sinica, 2012, 61(21): 216801. doi: 10.7498/aps.61.216801
    [7] Meng Li-Jun, Zhang Kai-Wang, Zhong Jian-Xin. Molecular dynamics simulation of formation of silicon nanoparticles on surfaces of carbon nanotubes. Acta Physica Sinica, 2007, 56(2): 1009-1013. doi: 10.7498/aps.56.1009
    [8] Chen Hui-Min, Liu En-Long. Theoretical calculation of molar heat capacity at constant pressureof nanoparticle and nanocrystalline. Acta Physica Sinica, 2011, 60(6): 066501. doi: 10.7498/aps.60.066501
    [9] Liu Jin-Hong, Li Fa-Shen, Tian Geng-Fang, Li Ji-Chen, Zhang Ling-Fei. Structure and magnetic properties of NiFe2O4 nanoparticles prepared by low-temperature solid-state reaction. Acta Physica Sinica, 2007, 56(10): 6050-6055. doi: 10.7498/aps.56.6050
    [10] Li Hui, Xie Er-Qing, Zhang Hong-Liang, Pan Xiao-Jun, Zhang Yong-Zhe. Optical properties of ZnO and MgxZn1-xO nanoparticles prepared by flame spray synthesis. Acta Physica Sinica, 2007, 56(6): 3584-3588. doi: 10.7498/aps.56.3584
  • Citation:
Metrics
  • Abstract views:  3847
  • PDF Downloads:  390
  • Cited By: 0
Publishing process
  • Received Date:  28 April 2012
  • Accepted Date:  10 June 2012
  • Published Online:  20 November 2012

Study on phase analysis of nanoparticles by high-voltage electrical explosion method of copper wire

  • 1. School of Engineering and Technology, Panzhihua University, Panzhihua 617000, China;
  • 2. College of Electronics & Information Engineering, Sichuan University, Chengdu 610065, China
Fund Project:  Project supported by the Major Program of the National Natural Science Foundation of China (Grant No.60890200) and the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No.10976017).

Abstract: Copper nanoparticles are produced by high-voltage electrical explosion of copper wires. The high-voltage breakdown experimental setup for copper is built. The morphology and composition of the breakdown material are tested by the transmission electron microscopy (TEM) and scanning electron microscopy (SEM), and X-ray diffractometry (XRD) and energy dispersive spectroscopy(EDS) methods, respectively. Based on the morphology, size distribution, elemental spectrum (EDS), and XRD analysis of the breakdown material, the phase characteristics of high-voltage breakdown copper wire are studied. The results show that wire is fully ionized under high pressure, forming a filamentous distribution which is composed of condensation of nanoparticles. The diameters of copper nanoparticles are between 30 nm and 60 nm. The nanoparticles product is composed of Cu and O elements. The product is a mixture of metallic copper, cupric oxide and cuprous oxide. The particle size and its product composition are controlled by varying length and diameter of the copper wire, discharge voltage, etc.

Reference (16)

Catalog

    /

    返回文章
    返回