Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Insitu neutron diffraction study of micromechanical interaction and phase transformation in dual phase NiTi alloy during tensile loading

Sun Guang-Ai Wang Hong Wang Xiao-Lin Chen Bo Chang Li-Li Liu Yao-Guang Sheng Liu-Si Woo Wanchuck Kang Mi-Hyun

Insitu neutron diffraction study of micromechanical interaction and phase transformation in dual phase NiTi alloy during tensile loading

Sun Guang-Ai, Wang Hong, Wang Xiao-Lin, Chen Bo, Chang Li-Li, Liu Yao-Guang, Sheng Liu-Si, Woo Wanchuck, Kang Mi-Hyun
PDF
Get Citation
  • It is well known that the shape memory effect of NiTi alloy is closely related to the micro-structural characteristics. Neutron diffraction method can used to explore the changes of the phase transformation, lattice strain and twining reorientation of bulk NiTi alloy during deformation caused by the applied stress. In this paper, combining the four types of deformation characteristics in the macro stress-strain curves of dual phase NiTi alloy and using in-situ neutron diffraction measurement, the micromechanical interactions and phase transformation are determined. The volume fraction of the initial austenite before deformation is about 22%. The contrast transformation, which is corresponding to the lattice strain rapid decreasing of (110)B2 and increasing of (002)B19', reveals that the stress-induced transformation from austenite to martensite phase appears with the volume fraction of austenite decreasing rapidly and 011 II type twinning increases at the low strain hardening stage. At the same time, the initial martensite grains change their orientation to a favorable direction and the new {201} type martensite twinnings induced with the increase of applied stress cannot recover after unloading. At the high strain hardening stage, the twinning deformation is considered to be the main mechanism from the observing of the changes in the full width at half maximum (FWHM). Meanwhile, the slipping caused by dislocation is the main deformation mechanism corresponding to the obvious increas of the FWHM at the statured stage of the strain hardening.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 91126001, 11105128, 51001024), the Science and Technology Foundation of Chinese Academy of Engineering Physics (Grant No. 2010A0103002), and the Science and Technology Innovation Fund of Institute of Nuclear Physics and Chemistry of Chinese Academy of Engineering Physics (Grant No. 2009CX01).
    [1]

    Hatcher N, Kontsevoi O Y, Freeman A J 2009 Phys. Rev. B 79 020202

    [2]

    Allafi J K, Ren X, Eggeler G 2002 Acta Mater. 50 793

    [3]

    Fan G, Chen W, Yeng S, Zhu J, Ren X, Otsuka K 2004 Acta Mater. 52 4351

    [4]

    Krishman M, Singh J B 2000 Acta Mater. 48 1325

    [5]

    Bhattacharya K, Conti K S, Zanzotto G, Zimmer J 2004 Nature 428 55

    [6]

    Liu Y, Xie Z L 2003 Acta Mater. 51 5529

    [7]

    Kulkov S N, Mironov Y P 1995 Nucl. Instr. Meth. Phys. Res. A 359 165

    [8]

    Sitepu H, Schmahl W W, Allafi J K, Eggeler G, Dlouhy A, Toebbens D M, Tovar M 2002 Scripta Mater. 46 543

    [9]

    Allafi J K, Schmahl W W, Wagner M, Sitepu H, Toebbens D M, Eggeler G 2004 Mater. Sci. Eng. A 378 161

    [10]

    Allafi J K, Schmahl W W, Toebbens D M 2006 Acta Mater. 54 3171

    [11]

    Allafi J K, Eggeler G, Schmahl W W, Sheptyakov D 2006 Mater. Sci. Eng. A 438-440 593

    [12]

    Young M L, Wagner M F X, Frenzel J, Schmahl W W, Eggeler G 2010 Acta Mater. 58 2344

    [13]

    Simon T, Kroger A, Somsen C, Dlouhy A, Eggeler G 2010 Acta Mater. 58 1850

    [14]

    Bhattacharya K, Kohn R V 1996 Acta Mater. 44 529

    [15]

    Gall K, Lim T J, Mcdowell D L, Sehitoglu H, Chumlyakov Y I 2000 Inter J. Plast. 16 1189

    [16]

    Bourke M A M, Vaidyanathan R, Dunand D C 1996 Appl. Phys. Lett. 69 21

    [17]

    Vaidyanathan R, Bourke M A M, Dunand D C 1999 J. Appl. Phys. 86 3020

    [18]

    Rathod C R, Clausen B, Bourke M A M, Vaidyanathan R 2006 Appl. Phys. Lett. 88 201919

    [19]

    Knowles K M, Smith D A 1981 Acta Metall. 29 101

    [20]

    Ren X, Otsuka K 1998 Scripta Mater. 38 1669

    [21]

    Liu Y, Liu Y, Van H J 1998 Scripta Mater. 39 1047

    [22]

    Miyazaki S, Otsuka K, Suzuki Y 1981 Scripta Metall. 15 287

    [23]

    Otsuka K, Ren X 2005 Pro. Mater. Sci. 50 511

    [24]

    Shaw J A, Kyriakides S 1997 Acta Mater. 45 683

    [25]

    Nishida M, Li S, Kitamura K, Furukawa T, Chiba A, Hara T 1998 Scripta Mater. 39 1749

    [26]

    Goo E, Duerig T, Melton K, Sinclair R 1985 Acta Metal. 33 1725

    [27]

    Li S, Yamauchi K, Maruhashi Y, Nishida M 2003 Scripta Mater. 49 723

  • [1]

    Hatcher N, Kontsevoi O Y, Freeman A J 2009 Phys. Rev. B 79 020202

    [2]

    Allafi J K, Ren X, Eggeler G 2002 Acta Mater. 50 793

    [3]

    Fan G, Chen W, Yeng S, Zhu J, Ren X, Otsuka K 2004 Acta Mater. 52 4351

    [4]

    Krishman M, Singh J B 2000 Acta Mater. 48 1325

    [5]

    Bhattacharya K, Conti K S, Zanzotto G, Zimmer J 2004 Nature 428 55

    [6]

    Liu Y, Xie Z L 2003 Acta Mater. 51 5529

    [7]

    Kulkov S N, Mironov Y P 1995 Nucl. Instr. Meth. Phys. Res. A 359 165

    [8]

    Sitepu H, Schmahl W W, Allafi J K, Eggeler G, Dlouhy A, Toebbens D M, Tovar M 2002 Scripta Mater. 46 543

    [9]

    Allafi J K, Schmahl W W, Wagner M, Sitepu H, Toebbens D M, Eggeler G 2004 Mater. Sci. Eng. A 378 161

    [10]

    Allafi J K, Schmahl W W, Toebbens D M 2006 Acta Mater. 54 3171

    [11]

    Allafi J K, Eggeler G, Schmahl W W, Sheptyakov D 2006 Mater. Sci. Eng. A 438-440 593

    [12]

    Young M L, Wagner M F X, Frenzel J, Schmahl W W, Eggeler G 2010 Acta Mater. 58 2344

    [13]

    Simon T, Kroger A, Somsen C, Dlouhy A, Eggeler G 2010 Acta Mater. 58 1850

    [14]

    Bhattacharya K, Kohn R V 1996 Acta Mater. 44 529

    [15]

    Gall K, Lim T J, Mcdowell D L, Sehitoglu H, Chumlyakov Y I 2000 Inter J. Plast. 16 1189

    [16]

    Bourke M A M, Vaidyanathan R, Dunand D C 1996 Appl. Phys. Lett. 69 21

    [17]

    Vaidyanathan R, Bourke M A M, Dunand D C 1999 J. Appl. Phys. 86 3020

    [18]

    Rathod C R, Clausen B, Bourke M A M, Vaidyanathan R 2006 Appl. Phys. Lett. 88 201919

    [19]

    Knowles K M, Smith D A 1981 Acta Metall. 29 101

    [20]

    Ren X, Otsuka K 1998 Scripta Mater. 38 1669

    [21]

    Liu Y, Liu Y, Van H J 1998 Scripta Mater. 39 1047

    [22]

    Miyazaki S, Otsuka K, Suzuki Y 1981 Scripta Metall. 15 287

    [23]

    Otsuka K, Ren X 2005 Pro. Mater. Sci. 50 511

    [24]

    Shaw J A, Kyriakides S 1997 Acta Mater. 45 683

    [25]

    Nishida M, Li S, Kitamura K, Furukawa T, Chiba A, Hara T 1998 Scripta Mater. 39 1749

    [26]

    Goo E, Duerig T, Melton K, Sinclair R 1985 Acta Metal. 33 1725

    [27]

    Li S, Yamauchi K, Maruhashi Y, Nishida M 2003 Scripta Mater. 49 723

  • [1] Wang Qing-Zhou, Lu Dong-Mei, Cui Chun-Xiang, Han Fu-Sheng. Effects of quenched-in vacancies on the reverse martensitic phase transformation temperature of the Cu-11.9Al-2.5Mn(wt%) shape memory alloy studied by internal friction. Acta Physica Sinica, 2008, 57(11): 7083-7087. doi: 10.7498/aps.57.7083
    [2] 孙光爱, 陈波, 吴二冬, 李武会, 张功, 汪小琳, V. Ji, T. Pirling, D. Hughes. Neutron diffraction study of aging process effect on phase structure of single crystal superalloy. Acta Physica Sinica, 2011, 60(8): 086102. doi: 10.7498/aps.60.086102
    [3] Vincent Ji, Darren Hughes, Thilo Pirling, Sun Guang-Ai, Chen Bo, Chen Hua, Wu Er-Dong, Zhang Jun. Neutron diffraction study of stress and lattice mismatch induced by thermo-mechanical fatigue in single crystal superalloys. Acta Physica Sinica, 2009, 58(4): 2549-2555. doi: 10.7498/aps.58.2549
    [4] Yue Xiao-Le, Xiang Yi-Lin, Zhang Ying. Global analysis of crises in shape memory thin plate system. Acta Physica Sinica, 2019, 68(18): 180501. doi: 10.7498/aps.68.20190155
    [5] Liu Hong-Tao, Sun Guang-Ai, Wang Yan-Dong, Chen Bo, Wang Xiao-Lin. Shock-induced transformation behavior in NiTi shape memory alloy. Acta Physica Sinica, 2013, 62(1): 018103. doi: 10.7498/aps.62.018103
    [6] Gong Chang-Wei, Wang Yi-Nong, Yang Da-Zhi. Ab initio study of the martensitic transformation of NiTi shape memory alloys. Acta Physica Sinica, 2006, 55(6): 2877-2881. doi: 10.7498/aps.55.2877
    [7] Shi Yu, Chen Xi-Ping, Xie Lei, Sun Guang-Ai, Fang Lei-Ming. High-pressure neutron diffraction techniques based on Paris-Edingburgh press. Acta Physica Sinica, 2019, 68(11): 116101. doi: 10.7498/aps.68.20190179
    [8] Shao Jian-Li, Wang Pei, Qin Cheng-Sen, Zhou Hong-Qiang. Shock-induced phase transformations of iron studied with molecular dynamics. Acta Physica Sinica, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [9] Shao Jian-Li, Qin Cheng-Sen, Wang Pei. Atomistic simulation of mechanical properties of martensitic transformation under dynamic compression. Acta Physica Sinica, 2009, 58(3): 1936-1941. doi: 10.7498/aps.58.1936
    [10] Zang Guo-Zhong, Ming Bao-Quan, Wang Jin-Feng, Wang Chun-Ming, Gai Zhi-Gang, Du Juan, Zheng Li-Mei. X-ray diffraction and phase transition analysis for (K, Na)NbO3-based lead-free piezoelectric ceramics. Acta Physica Sinica, 2008, 57(9): 5962-5967. doi: 10.7498/aps.57.5962
  • Citation:
Metrics
  • Abstract views:  1577
  • PDF Downloads:  1138
  • Cited By: 0
Publishing process
  • Received Date:  13 April 2012
  • Accepted Date:  18 June 2012
  • Published Online:  20 November 2012

Insitu neutron diffraction study of micromechanical interaction and phase transformation in dual phase NiTi alloy during tensile loading

  • 1. Key Laboratory for Neutron Physics of Chinese Academy of Engineering Physics, Institute of Nuclear Physics and Chemistry, Mianyang 621900, China;
  • 2. Department of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China;
  • 3.  School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China;
  • 4. Neutron Science Division Korea Atomic Energy Research Institute, Daejon 305-353, South Korea
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 91126001, 11105128, 51001024), the Science and Technology Foundation of Chinese Academy of Engineering Physics (Grant No. 2010A0103002), and the Science and Technology Innovation Fund of Institute of Nuclear Physics and Chemistry of Chinese Academy of Engineering Physics (Grant No. 2009CX01).

Abstract: It is well known that the shape memory effect of NiTi alloy is closely related to the micro-structural characteristics. Neutron diffraction method can used to explore the changes of the phase transformation, lattice strain and twining reorientation of bulk NiTi alloy during deformation caused by the applied stress. In this paper, combining the four types of deformation characteristics in the macro stress-strain curves of dual phase NiTi alloy and using in-situ neutron diffraction measurement, the micromechanical interactions and phase transformation are determined. The volume fraction of the initial austenite before deformation is about 22%. The contrast transformation, which is corresponding to the lattice strain rapid decreasing of (110)B2 and increasing of (002)B19', reveals that the stress-induced transformation from austenite to martensite phase appears with the volume fraction of austenite decreasing rapidly and 011 II type twinning increases at the low strain hardening stage. At the same time, the initial martensite grains change their orientation to a favorable direction and the new {201} type martensite twinnings induced with the increase of applied stress cannot recover after unloading. At the high strain hardening stage, the twinning deformation is considered to be the main mechanism from the observing of the changes in the full width at half maximum (FWHM). Meanwhile, the slipping caused by dislocation is the main deformation mechanism corresponding to the obvious increas of the FWHM at the statured stage of the strain hardening.

Reference (27)

Catalog

    /

    返回文章
    返回