Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The effects of stacking fault and temperature on deformation mechanism of nanocrystalline Mg

Song Hai-Yang Li Yu-Longi

The effects of stacking fault and temperature on deformation mechanism of nanocrystalline Mg

Song Hai-Yang, Li Yu-Longi
PDF
Get Citation
  • The effects of stacking fault (SF) and temperature on the mechanical properties of nano-polycrystal Mg under tension loading are investigated by molecular dynamics simulations. The interatomic potential of embedded atom method (EAM) is used as the Mg-Mg interaction. The computational results show that the yield strength of nano-polycrystal Mg can be obviously enhanced when stacking fault is introduced into grains, and the effect of SF on the Young's modulus of nano-polycrystal Mg is very small. The results also show that tensile twins and new grain at 300.0 K are nucleated and initiated at grain boundaries, growing continuously with the increase of strain. The dihedral angel between the (1000) plane of new grain and the X-Y plane is about 35. In other words, the nucleation and the growth of twins and new grains are the predominant deformation mechanism for nano-polycrystal Mg at 300.0K. We also find that at 10.0K the dislocation nucleation and slip are the predominant modes of the plastic deformation for nano-polycrystal Mg.
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 10932008), the National Natural Science Foundation of China (Grant No. 10902083), and the Program for New Scientific and Technological Star of Shaanxi Province (Grant No.2012KJXX-39).
    [1]

    Lu L, Chen X, Huang X, Lu K 2009 Science 323 607

    [2]

    Cao A J, Wei Y G 2007 J. Appl. Phys. 102 083511

    [3]

    Liang H Y, Wang X X, Wu H A, Wang Y 2002 Acta Phys. Sin. 51 2308 (in Chinese) [梁海弋, 王秀喜, 吴恒安, 王宇 2002 物理学报 51 2308]

    [4]

    Zhang Y G, Lu J, Zhang H W, Chen Z 2009 Scripta Mater. 60 508

    [5]

    Liu X M, You X C, Liu Z L, Nie J F, Zhuang Z 2009 Acta Phys. Sin. 58 1849 (in Chinese) [刘小明, 由小川, 柳占立, 聂君峰, 庄茁 2009 物理学报 58 1849]

    [6]

    Qu S X, Zhou H F 2010 Nanotechnology 21 335704

    [7]

    Ma W, Zhu W J, Chen K G, Jing F Q 2011 Acta Phys. Sin. 60 016107 (in Chinese) [马文, 祝文军, 陈开果, 经福谦 2011 物理学报 60 016107]

    [8]

    Ma W, Zhu W J, Zhang Y L, Chen K G, Deng X L, Jing F Q 2010 Acta Phys. Sin. 59 4781 (in Chinese) [马文, 祝文军, 张亚林, 陈开果, 邓小良, 经福谦 2010 物理学报 59 4781]

    [9]

    Qu S X, Zhou H F 2011 Scripta Mater. 65 265

    [10]

    Yang Z Y, Lu Z X, Zhao Y P 2009 Comput. Mater. Sci. 46 142

    [11]

    Han J, Su X M, Jin Z H 2011 Scripta Mater. 64 693

    [12]

    Tang T, Kim S, Horstemeyer M F 2010 Acta. Mater. 58 4742

    [13]

    Kim D H, Ebrahimi F, Manuel M V 2011 Mater. Sci. Eng. A 528 5411

    [14]

    Li B, Ma E 2009 Acta. Mater. 57 1734

    [15]

    Guo Y F, Wang Y S, Qi H G 2010Acta Metall. Sin. 23 370

    [16]

    Song H Y, Li Y L 2012 Phys. Lett. A 376 529

    [17]

    Song H Y, Li Y L 2012 J. Appl. Phys. 111 044322

    [18]

    Zhu Y T, Liao X Z, Wu X L 2012 Prog. Mater. Sci. 57 1

    [19]

    Liu X Y, Adams J B, Ercolessi F, Moriarty J A 1996 Modelling Simul. Mater. Sci. Eng. 4 293

    [20]

    Evans D J, Holian B L 1985 J. Chem. Phys. 83 4069

    [21]

    Faken D, Jonsson H 1994 Compos. Mater. Sci. 2 279

    [22]

    Stukowski A 2010 Modelling Simul. Mater. Sci. Eng. 18 015012

    [23]

    Froseth A G, VanSwygenhoven H, Derlet P M 2005 Acta. Mater. 53 4847

  • [1]

    Lu L, Chen X, Huang X, Lu K 2009 Science 323 607

    [2]

    Cao A J, Wei Y G 2007 J. Appl. Phys. 102 083511

    [3]

    Liang H Y, Wang X X, Wu H A, Wang Y 2002 Acta Phys. Sin. 51 2308 (in Chinese) [梁海弋, 王秀喜, 吴恒安, 王宇 2002 物理学报 51 2308]

    [4]

    Zhang Y G, Lu J, Zhang H W, Chen Z 2009 Scripta Mater. 60 508

    [5]

    Liu X M, You X C, Liu Z L, Nie J F, Zhuang Z 2009 Acta Phys. Sin. 58 1849 (in Chinese) [刘小明, 由小川, 柳占立, 聂君峰, 庄茁 2009 物理学报 58 1849]

    [6]

    Qu S X, Zhou H F 2010 Nanotechnology 21 335704

    [7]

    Ma W, Zhu W J, Chen K G, Jing F Q 2011 Acta Phys. Sin. 60 016107 (in Chinese) [马文, 祝文军, 陈开果, 经福谦 2011 物理学报 60 016107]

    [8]

    Ma W, Zhu W J, Zhang Y L, Chen K G, Deng X L, Jing F Q 2010 Acta Phys. Sin. 59 4781 (in Chinese) [马文, 祝文军, 张亚林, 陈开果, 邓小良, 经福谦 2010 物理学报 59 4781]

    [9]

    Qu S X, Zhou H F 2011 Scripta Mater. 65 265

    [10]

    Yang Z Y, Lu Z X, Zhao Y P 2009 Comput. Mater. Sci. 46 142

    [11]

    Han J, Su X M, Jin Z H 2011 Scripta Mater. 64 693

    [12]

    Tang T, Kim S, Horstemeyer M F 2010 Acta. Mater. 58 4742

    [13]

    Kim D H, Ebrahimi F, Manuel M V 2011 Mater. Sci. Eng. A 528 5411

    [14]

    Li B, Ma E 2009 Acta. Mater. 57 1734

    [15]

    Guo Y F, Wang Y S, Qi H G 2010Acta Metall. Sin. 23 370

    [16]

    Song H Y, Li Y L 2012 Phys. Lett. A 376 529

    [17]

    Song H Y, Li Y L 2012 J. Appl. Phys. 111 044322

    [18]

    Zhu Y T, Liao X Z, Wu X L 2012 Prog. Mater. Sci. 57 1

    [19]

    Liu X Y, Adams J B, Ercolessi F, Moriarty J A 1996 Modelling Simul. Mater. Sci. Eng. 4 293

    [20]

    Evans D J, Holian B L 1985 J. Chem. Phys. 83 4069

    [21]

    Faken D, Jonsson H 1994 Compos. Mater. Sci. 2 279

    [22]

    Stukowski A 2010 Modelling Simul. Mater. Sci. Eng. 18 015012

    [23]

    Froseth A G, VanSwygenhoven H, Derlet P M 2005 Acta. Mater. 53 4847

  • [1] Lin Li-Bin, He Jie, Chen Jun, Wang Xiao-Zhong. The first principles study on mechanical propertiesof He doped grain boundary of Al. Acta Physica Sinica, 2011, 60(7): 077104. doi: 10.7498/aps.60.077104
    [2] Zeng Xiao-Bo, Zhu Xiao-Ling, Li De-Hua, Chen Zhong-Jun, Ai Ying-Wei. First-principles calculations of the mechanical properties of IrB and IrB2. Acta Physica Sinica, 2014, 63(15): 153101. doi: 10.7498/aps.63.153101
    [3] Yu Tao, Xie Hong-Xian, Liu Bo. Effect of temperature on motion of misfit dislocation in γ/γ'interface of a Ni-based single-crystal superalloy:molecular dynamic simulations. Acta Physica Sinica, 2011, 60(4): 046104. doi: 10.7498/aps.60.046104
    [4] Wang Xue-Fei, Ma Jing-Jie, Jiao Zhao-Yong, Zhang Xian-Zhou. Theoretical studies of electronic, mechanical and thermal properties of Ti3(SnxAl1-x)C2 solid solutions. Acta Physica Sinica, 2016, 65(20): 206201. doi: 10.7498/aps.65.206201
    [5] Wang Xiao-Yuan, Zhao Feng-Peng, Wang Jie, Yan Ya-Bin. First-principle studies of mechanical, electronic properties and strain engineering of metal-organic framework. Acta Physica Sinica, 2016, 65(17): 178105. doi: 10.7498/aps.65.178105
    [6] Li Jun, Liu Li-Sheng, Xu Shuang, Zhang Jin-Yong. Mechanical, electronic properties and deformation mechanisms of Ti3B4 under uniaxial compressions: a first-principles calculation. Acta Physica Sinica, 2020, 69(4): 043102. doi: 10.7498/aps.69.20191194
    [7] Cheng Xin-Lu, Li De-Hua, Zhu Xiao-Ling, Su Wen-Jin. First-principles calculations for the structure and mechanical properties of PtN2. Acta Physica Sinica, 2010, 59(3): 2004-2009. doi: 10.7498/aps.59.2004
    [8] Li De-Hua, Su Wen-Jin, Zhu Xiao-Ling. First-principles calculations for the mechanical properties of BC5. Acta Physica Sinica, 2012, 61(2): 023103. doi: 10.7498/aps.61.023103
    [9] Li Qing-Kun, Sun Yi, Zhou Yu, Zeng Fan-Lin. First principles study on the structure and mechanical properties of hcp-C3 carbon bulk ring. Acta Physica Sinica, 2012, 61(4): 043103. doi: 10.7498/aps.61.043103
    [10] Wang Jun, Zhang Bao-Ling, Zhou Yu-Lu, Hou Qing. Molecular dynamics simulation of helium behavior in tungsten matrix. Acta Physica Sinica, 2011, 60(10): 106601. doi: 10.7498/aps.60.106601
    [11] Dai Yun-Ya, Yang Li, Peng Shu-Ming, Long Xing-Gui, Zhou Xiao-Song, Zu Xiao-Tao. First-principles calculation for mechanical properties of metal dihydrides. Acta Physica Sinica, 2012, 61(10): 108801. doi: 10.7498/aps.61.108801
  • Citation:
Metrics
  • Abstract views:  1580
  • PDF Downloads:  1696
  • Cited By: 0
Publishing process
  • Received Date:  21 May 2012
  • Accepted Date:  19 June 2012
  • Published Online:  20 November 2012

The effects of stacking fault and temperature on deformation mechanism of nanocrystalline Mg

  • 1. School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China;
  • 2. School of Science, Xi’an University of Posts and Telecommunications, Xi’an 710121, China
Fund Project:  Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 10932008), the National Natural Science Foundation of China (Grant No. 10902083), and the Program for New Scientific and Technological Star of Shaanxi Province (Grant No.2012KJXX-39).

Abstract: The effects of stacking fault (SF) and temperature on the mechanical properties of nano-polycrystal Mg under tension loading are investigated by molecular dynamics simulations. The interatomic potential of embedded atom method (EAM) is used as the Mg-Mg interaction. The computational results show that the yield strength of nano-polycrystal Mg can be obviously enhanced when stacking fault is introduced into grains, and the effect of SF on the Young's modulus of nano-polycrystal Mg is very small. The results also show that tensile twins and new grain at 300.0 K are nucleated and initiated at grain boundaries, growing continuously with the increase of strain. The dihedral angel between the (1000) plane of new grain and the X-Y plane is about 35. In other words, the nucleation and the growth of twins and new grains are the predominant deformation mechanism for nano-polycrystal Mg at 300.0K. We also find that at 10.0K the dislocation nucleation and slip are the predominant modes of the plastic deformation for nano-polycrystal Mg.

Reference (23)

Catalog

    /

    返回文章
    返回