Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation, structures and electrical properties of alkaline earth and transition metal-doped NdAlO3 conducting ceramics

Xiang Jun Guo Yin-Tao Zhou Guang-Zhen Chu Yan-Qiu

Preparation, structures and electrical properties of alkaline earth and transition metal-doped NdAlO3 conducting ceramics

Xiang Jun, Guo Yin-Tao, Zhou Guang-Zhen, Chu Yan-Qiu
PDF
Get Citation
  • Novel Nd0.9Sr0.1Al1-xMxO3-δ (M = Co, Fe, Mn; x =0, 0.15, 0.3, 0.5) conducting ceramics each with a hexagonal perovskite structure are prepared using organic-gel method combined with subsequent high temperature sintering. The influences of transition elements (Co, Fe, and Mn) and their dosages on the structure characteristics and electrical properties are investigated in detail. The experimental results reveal that well-crystallized Nd0.9Sr0.1Al1-xMxO3-δ perovskite oxide ultrafine powders can be obtained by calcining the gel precursors at 900 ℃ for 5 h. The lattice parameters of sintered ceramics increase with the increase of transition metal content (x), and they increase according to the order of Co, Mn, and Fe. All the samples are mixed conductors of oxygen ions and holes in air, and the oxygen ion transport number is enhanced monotonically from 0.32 at 500 ℃ to 0.63 at 850 ℃ for NdAlO3-δ ceramic single-doped with alkaline earth metal Sr, indicating that this material has an electronic-to-ionic dominant transition in electrical conductivity with measurement temperature increasing. Whereas the oxygen ion transport numbers are all below 0.001 for the samples co-doped with Sr and transition metals (Co, Fe, and Mn), and their electrical conductivities are absolutely dominated by p-type conduction. It is found that the conductivity values increase with the increase of x value, and they increase according to the order of Mn, Fe, and Co, while the change of corresponding apparent activation energies is just the opposite. Nd0.9Sr0.1Al0.5Co0.5O3-δ ceramic has the highest electrical conductivity, ~100.8 S/cm at 800 ℃, and the lowest apparent activation energy (0.135 eV) in all the synthesized samples. The observed changes in structure and electrical property in this study can be explained on the basis of the difference in ionic radii among the doped transition metals as well as the differences in bond energies and covalencies among the M-O bonds.
    • Funds: Project supported by the Qinglan Project of Jiangsu Province, China, and the Program for Postgraduates Research Innovation in University of Jiangsu Province, China (Grant No. CXLX11-0293).
    [1]

    Ngamou P H T, Bahlawane N 2009 J. Solid State Chem. 182 849

    [2]

    Lee K T, Manthiram A 2005 J. Electrochem. Soc. 152 A197

    [3]

    Lee K T, Manthiram A 2006 J. Electrochem. Soc. 153 A794

    [4]

    Ecija A, Vidal K, Larrañaga A, Martinez-Amesti A, Ortega-San-Martin L, Arriortua M I 2011 Solid State Ionics 201 35

    [5]

    Sakaki Y, Takeda Y, Kato A, Imanishi N. Yamamoto O. Hattori M, Iio M, Esaki Y 1999 Solid State Ionics 118 187

    [6]

    Wen T L, Tu H Y, Xu Z H, Yamamoto O 1999 Solid State Ionics 121 25

    [7]

    Tu H Y, Takeda Y, Imanishi N, Yamamoto O 1999 Solid State Ionics 117 277

    [8]

    Skinner S J 2001 Int. J. Inorg. Mater. 3 113

    [9]

    Qiu L, Ichikawa T, Hirano A, Imanishi N, Takeda Y 2003 Solid State Ionics 158 55

    [10]

    Kostogloudis G C, Ftikos C 2007 J. Europ. Ceram. Soc. 27 273

    [11]

    Lee K T, Manthiram A 2006 J. Power Sour. 158 1202

    [12]

    Lee K T, Manthiram A 2007 Solid State Ionics 178 995

    [13]

    Torres-Garibay C, Kovar D, Manthiram A 2009 J. Power Sour. 187 480

    [14]

    Dutta a, Mukhopadhyay H, Basu R N 2009 J. Europ. Ceram. Soc. 29 2003

    [15]

    Hariharan R, Venkatasubramanian A, Gopalan P 2010 J. Solid State Electrochem. 14 1657

    [16]

    Kharton V V, Maruques F M, B Atkinson A 2004 Solid State Ionics 174 134

    [17]

    Chen T Y, Fung K Z 2004 J. Power Sour. 132 1

    [18]

    Ishihara T 2008 Perovskite Oxide for Solid Oxide Fuel Cells (London: Springer) p69

    [19]

    Fu Q X, Tietz F, Lersch P, Stöver D 2006 Solid State Ionics 177 1059

    [20]

    Tsipis E V, Kharton V V, Waerenborgh J C, Rojas D P, Naumovich E N, Frade J R 2006 J. Alloys Comp. 413 244

    [21]

    Xiang J, Wei T, Peng T G, Zhang Y, Lou K X, Shen X Q 2009 Acta Phys. Sin. 58 3402 (in Chinese) [向军, 卫婷, 彭田贵, 张誉, 娄可行, 沈湘黔 2009 物理学报 58 3402]

    [22]

    Xiang J, Guo Y T, Chu Y Q, Zhou G Z 2011 Acta Phys. Sin. 60 027203 (in Chinese) [向军, 郭银涛, 褚艳秋, 周广振 2011 物理学报 60 027203]

    [23]

    Zhu C F, Xue J H, Wang L 2011 Chinese. J. Inorg. Chem. 27 2377 (in Chinese) [朱承飞, 薛金花, 王李 2011 无机化学学报 27 2377]

    [24]

    Pecchi G, Campos C, Pena O 2009 Mater. Res. Bull. 44 846

    [25]

    Zhu C F, Wang G, Xue J H, Wang X J 2009 Acta Phys. Chim. Sin. 25 1179 (in Chinese) [朱承飞, 王刚, 薛金花, 王晓钧2009 物理化学学报 25 1179]

    [26]

    Shannon R D 1976 Acta Cryst. A 32 751

    [27]

    Jiang J G, Cui C, Chen G 2005 J. Mater. Sci. Engin. 23 902 (in Chinese) [江金国, 崔崇, 陈光2005 材料科学与工程学报 23 902]

    [28]

    Mei Y, Chen L, Cao Y Z, Liu B Q, He J H, Zhu Z W, Xu Z A 2010 Acta Phys. Sin. 59 2795 (in Chinese) [梅烨, 陈亮, 曹永珍, 刘宝琴, 何军辉, 朱增伟, 许祝安 2010 物理学报 59 2795]

    [29]

    Xia Z C, Tang C Q 1999 Acta Phys. Sin. 48 1518 (in Chinese) [夏正才, 唐超群 1999 物理学报 25 1518]

    [30]

    Kang J S, Lee H J, Kim G, Kim G H, Dabrowski B, Kolesnik S, Lee Hangil, Kim J Y, Min B I 2008 Phys. Rev. B 78 054434

  • [1]

    Ngamou P H T, Bahlawane N 2009 J. Solid State Chem. 182 849

    [2]

    Lee K T, Manthiram A 2005 J. Electrochem. Soc. 152 A197

    [3]

    Lee K T, Manthiram A 2006 J. Electrochem. Soc. 153 A794

    [4]

    Ecija A, Vidal K, Larrañaga A, Martinez-Amesti A, Ortega-San-Martin L, Arriortua M I 2011 Solid State Ionics 201 35

    [5]

    Sakaki Y, Takeda Y, Kato A, Imanishi N. Yamamoto O. Hattori M, Iio M, Esaki Y 1999 Solid State Ionics 118 187

    [6]

    Wen T L, Tu H Y, Xu Z H, Yamamoto O 1999 Solid State Ionics 121 25

    [7]

    Tu H Y, Takeda Y, Imanishi N, Yamamoto O 1999 Solid State Ionics 117 277

    [8]

    Skinner S J 2001 Int. J. Inorg. Mater. 3 113

    [9]

    Qiu L, Ichikawa T, Hirano A, Imanishi N, Takeda Y 2003 Solid State Ionics 158 55

    [10]

    Kostogloudis G C, Ftikos C 2007 J. Europ. Ceram. Soc. 27 273

    [11]

    Lee K T, Manthiram A 2006 J. Power Sour. 158 1202

    [12]

    Lee K T, Manthiram A 2007 Solid State Ionics 178 995

    [13]

    Torres-Garibay C, Kovar D, Manthiram A 2009 J. Power Sour. 187 480

    [14]

    Dutta a, Mukhopadhyay H, Basu R N 2009 J. Europ. Ceram. Soc. 29 2003

    [15]

    Hariharan R, Venkatasubramanian A, Gopalan P 2010 J. Solid State Electrochem. 14 1657

    [16]

    Kharton V V, Maruques F M, B Atkinson A 2004 Solid State Ionics 174 134

    [17]

    Chen T Y, Fung K Z 2004 J. Power Sour. 132 1

    [18]

    Ishihara T 2008 Perovskite Oxide for Solid Oxide Fuel Cells (London: Springer) p69

    [19]

    Fu Q X, Tietz F, Lersch P, Stöver D 2006 Solid State Ionics 177 1059

    [20]

    Tsipis E V, Kharton V V, Waerenborgh J C, Rojas D P, Naumovich E N, Frade J R 2006 J. Alloys Comp. 413 244

    [21]

    Xiang J, Wei T, Peng T G, Zhang Y, Lou K X, Shen X Q 2009 Acta Phys. Sin. 58 3402 (in Chinese) [向军, 卫婷, 彭田贵, 张誉, 娄可行, 沈湘黔 2009 物理学报 58 3402]

    [22]

    Xiang J, Guo Y T, Chu Y Q, Zhou G Z 2011 Acta Phys. Sin. 60 027203 (in Chinese) [向军, 郭银涛, 褚艳秋, 周广振 2011 物理学报 60 027203]

    [23]

    Zhu C F, Xue J H, Wang L 2011 Chinese. J. Inorg. Chem. 27 2377 (in Chinese) [朱承飞, 薛金花, 王李 2011 无机化学学报 27 2377]

    [24]

    Pecchi G, Campos C, Pena O 2009 Mater. Res. Bull. 44 846

    [25]

    Zhu C F, Wang G, Xue J H, Wang X J 2009 Acta Phys. Chim. Sin. 25 1179 (in Chinese) [朱承飞, 王刚, 薛金花, 王晓钧2009 物理化学学报 25 1179]

    [26]

    Shannon R D 1976 Acta Cryst. A 32 751

    [27]

    Jiang J G, Cui C, Chen G 2005 J. Mater. Sci. Engin. 23 902 (in Chinese) [江金国, 崔崇, 陈光2005 材料科学与工程学报 23 902]

    [28]

    Mei Y, Chen L, Cao Y Z, Liu B Q, He J H, Zhu Z W, Xu Z A 2010 Acta Phys. Sin. 59 2795 (in Chinese) [梅烨, 陈亮, 曹永珍, 刘宝琴, 何军辉, 朱增伟, 许祝安 2010 物理学报 59 2795]

    [29]

    Xia Z C, Tang C Q 1999 Acta Phys. Sin. 48 1518 (in Chinese) [夏正才, 唐超群 1999 物理学报 25 1518]

    [30]

    Kang J S, Lee H J, Kim G, Kim G H, Dabrowski B, Kolesnik S, Lee Hangil, Kim J Y, Min B I 2008 Phys. Rev. B 78 054434

  • [1] CHU BAO-JIN, LI GUO-RONG, YIN QING-RUI, ZHANG WANG-ZHONG, CHEN DA-REN. INFLUENCE OF NONSTOICHIOMETRY AND DOPING ON ELECTRICAL PROPERTIES OF (Na1/2Bi1/2)0.92Ba0.08TiO3 CERAMICS. Acta Physica Sinica, 2001, 50(10): 2012-2016. doi: 10.7498/aps.50.2012
    [2] Xiang Jun, Guo Yin-Tao, Chu Yan-Qiu, Zhou Guang-Zhen. Preparation and electrical properties of double-doped perovskitestructured conducting ceramics Sm0.9Sr0.1Al1-xCoxO3-δ. Acta Physica Sinica, 2011, 60(2): 027203. doi: 10.7498/aps.60.027203
    [3] Wang Xiao-Hui, Xiang Jun. Solid-state reaction synthesis and electrical properties of Sm0.9Sr0.1AlO3-δ perovskite oxide. Acta Physica Sinica, 2008, 57(7): 4417-4423. doi: 10.7498/aps.57.4417
    [4] Yuan Chang-Lai, Liu Xin-Yu, Huang Jing-Yue, Zhou Chang-Rong, Xu Ji-Wen. Electrical properties and impedance analysis of Bi0.5Ba0.5FeO3 ceramic. Acta Physica Sinica, 2011, 60(2): 025201. doi: 10.7498/aps.60.025201
    [5] Zhao Xiao-Qiang, Zhao Xue-Tong, Xu Chao, Li Wei-Wei, Ren Lu-Lu, Liao Rui-Jin, Li Jian-Ying. Recent research progress of relaxation performances of defects in ZnO-Bi2O3 varistor ceamics. Acta Physica Sinica, 2017, 66(2): 027701. doi: 10.7498/aps.66.027701
    [6] Yu Jue-Zhi, Hu Yong-Sheng, Li Hong, Huang Xue-Jie, Chen Li-Quan. Radical anion based liquid electrode materials. Acta Physica Sinica, 2017, 66(8): 088201. doi: 10.7498/aps.66.088201
    [7] Shen Xiang-Qian, Wei Ting, Peng Tian-Gui, Zhang Yu, Lou Ke-Xing, Xiang Jun. Preparation and electrical properties of the novel mixed ionic-electronic conductors Sm0.9Ca0.1Al1-xMnxO3. Acta Physica Sinica, 2009, 58(5): 3402-3408. doi: 10.7498/aps.58.3402
    [8] Gou Bing-Cong, Gu Juan, Wang Shan-Ying. The geometrical structure, electronic structure and magnetism of bimetallic AunM2 (n=1,2; M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni) clusters. Acta Physica Sinica, 2009, 58(5): 3338-3351. doi: 10.7498/aps.58.3338
    [9] Zhong Xiang-Li, Wang Jin-Bin, Liao Min, Zhou Yi-Chun, Tan Cong-Bing, Pan Wei. Effects of neodymium doping on microstructures and ferroelectric properties of bismuth titanate ferroelectric thin films. Acta Physica Sinica, 2007, 56(10): 6084-6089. doi: 10.7498/aps.56.6084
    [10] Ding Nan, Tang Xin-Gui, Kuang Shu-Juan, Wu Jun-Bo, Liu Qiu-Xiang, He Qin-Yu. Effect of MnO2 additive on the piezoelectric and dielectric properties of Ba(Zr, Ti)O3 ceramics. Acta Physica Sinica, 2010, 59(9): 6613-6619. doi: 10.7498/aps.59.6613
  • Citation:
Metrics
  • Abstract views:  3342
  • PDF Downloads:  448
  • Cited By: 0
Publishing process
  • Received Date:  05 April 2012
  • Accepted Date:  05 June 2012
  • Published Online:  20 November 2012

Preparation, structures and electrical properties of alkaline earth and transition metal-doped NdAlO3 conducting ceramics

  • 1. School of Mathematics and Physics, Jiangsu University of Science and Technology, Zhenjiang 212003, China
Fund Project:  Project supported by the Qinglan Project of Jiangsu Province, China, and the Program for Postgraduates Research Innovation in University of Jiangsu Province, China (Grant No. CXLX11-0293).

Abstract: Novel Nd0.9Sr0.1Al1-xMxO3-δ (M = Co, Fe, Mn; x =0, 0.15, 0.3, 0.5) conducting ceramics each with a hexagonal perovskite structure are prepared using organic-gel method combined with subsequent high temperature sintering. The influences of transition elements (Co, Fe, and Mn) and their dosages on the structure characteristics and electrical properties are investigated in detail. The experimental results reveal that well-crystallized Nd0.9Sr0.1Al1-xMxO3-δ perovskite oxide ultrafine powders can be obtained by calcining the gel precursors at 900 ℃ for 5 h. The lattice parameters of sintered ceramics increase with the increase of transition metal content (x), and they increase according to the order of Co, Mn, and Fe. All the samples are mixed conductors of oxygen ions and holes in air, and the oxygen ion transport number is enhanced monotonically from 0.32 at 500 ℃ to 0.63 at 850 ℃ for NdAlO3-δ ceramic single-doped with alkaline earth metal Sr, indicating that this material has an electronic-to-ionic dominant transition in electrical conductivity with measurement temperature increasing. Whereas the oxygen ion transport numbers are all below 0.001 for the samples co-doped with Sr and transition metals (Co, Fe, and Mn), and their electrical conductivities are absolutely dominated by p-type conduction. It is found that the conductivity values increase with the increase of x value, and they increase according to the order of Mn, Fe, and Co, while the change of corresponding apparent activation energies is just the opposite. Nd0.9Sr0.1Al0.5Co0.5O3-δ ceramic has the highest electrical conductivity, ~100.8 S/cm at 800 ℃, and the lowest apparent activation energy (0.135 eV) in all the synthesized samples. The observed changes in structure and electrical property in this study can be explained on the basis of the difference in ionic radii among the doped transition metals as well as the differences in bond energies and covalencies among the M-O bonds.

Reference (30)

Catalog

    /

    返回文章
    返回