Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Scanning tunneling mircroscopy and X-ray photoelectron spectroscopy studies of MnSi film and MnSi1.7 nanowires grown on Si substrates

Shi Gao-Ming Zou Zhi-Qiang Sun Li-Min Li Wei-Cong Liu Xiao-Yong

Scanning tunneling mircroscopy and X-ray photoelectron spectroscopy studies of MnSi film and MnSi1.7 nanowires grown on Si substrates

Shi Gao-Ming, Zou Zhi-Qiang, Sun Li-Min, Li Wei-Cong, Liu Xiao-Yong
PDF
Get Citation
  • Manganese silicides are promising industrial materials in optoelectronics and microelectronics fields. The study of electronic structures of manganese silicide film and nanowires is essential for a deeper understanding of their properties. In this paper, MnSi film and MnSi1.7 nanowires are prepared by molecular beam epitaxy method, and then observed by scanning tunneling microscopy (STM). The Mn 2p and Si 2p of MnSi film and MnSi1.7 nanowires are comprehensively studied using X-ray photoelectron spectroscopy (XPS). The results demonstrate that MnSi film with ~ 0.9 nm high is √3 × √3 reconstruction, and that the MnSi1.7 nanowires are about ~ 3 nm high, 16—18 nm wide and 500—1500 nm long. The binding energies of the Mn 2p1/2 level and Mn 2p3/2 level for MnSi film are 649.7 and 638.7 eV, respectively, which coincide with those of MnSi1.7 nanowires. The Mn 2p3/2 and Mn 2p1/2 peaks which are located at 640—645 eV and ~653.8 eV indicate that an oxide layer formed on the surfaces of film and nanowires because of short-time exposure to the atmosphere. The negative chemical shifts for MnSi film and MnSi1.7 nanowires from Si2p spectra indicate that with the formation of manganese silicides, the chemical state of Si is changed.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61176017) and the Innovation Program of Shanghai Municipal Education Commission, China (Grant No. 12ZZ025).
    [1]

    Schmitt A L, Higgins J M, Szczech J R, Jin S 2010 J. Mater. Chem. 20 223

    [2]

    Zhang Q, Takeguchi M, Tanaka M, Furuya K 2002 J. Cryst. Growth 237-239 1956

    [3]

    Li W C, Zou Z Q, Wang D, Shi G M 2012 Acta Phys. Sin. 61 066801 (in Chinese) [李玮聪, 邹志强, 王丹, 石高明 2012 物理学报 61 066801]

    [4]

    Zou Z Q, Li W C, Liang J M, Wang D 2011 Acta Mater. 59 7473

    [5]

    Lian Y C, Chen L J 1986 Appl. Phys. Lett. 48 359

    [6]

    Mahan J E 2004 Thin Solid Films 461 152

    [7]

    Higgins J M, Schmitt A L, Guzei I A, Jin S 2008 J. Am. Chem. Soc. 130 16086

    [8]

    Luo W H, Li H, Lin Z B, Tang X F 2010 Acta Phys. Sin. 59 8783 (in Chinese) [罗文辉, 李涵, 林泽冰, 唐新峰 2010 物理学报 59 8783]

    [9]

    Petrova L I, Dudkin L D, Fedorov M I, Solomkin F Y, Zaitsev V K, Eremin I S 2002 Tech. Phys. 47 550

    [10]

    Higashi S, Kocán P, Tochihara H 2009 Phys. Rev. B 79 205312

    [11]

    Kumar A, Tallarida M, Hansmann M, Starke U, Horn K 2004 J. Phys. D: Appl. Phys. 37 1083

    [12]

    Tatsuoka H, Koga T, Matsuda K, Nose Y, Souno Y, Kuwabara H, Brown P D, Humphreys C J 2001 Thin Solid Films 381 231

    [13]

    Hou Q R, Zhao W, Chen Y B, He Y J 2008 Phys. Stat. Sol. (a) 205 2687

    [14]

    Stevens M, He Z, Smith D J, Bennett P A 2003 J. Appl. Phys. 93 5670

    [15]

    Zou Z Q, Wang H, Wang D, Wang Q K, Mao J J, Kong X Y 2007 Appl. Phys. Lett. 90 133111

    [16]

    Zou Z Q, Li W C 2011 Phys. Lett. A 375 849

    [17]

    Ohtsu N, Oku M, Nomura A, Sugawara T, Shishido T, Wagatsuma K 2008 Appl. Surf. Sci. 254 3288

    [18]

    Audi A A, Sherwood P M A 2002 Surf. Interface Anal. 33 274

    [19]

    Süzer S, Ertas N, Ataman O Y 1999 Appl. Spectrosc. 53 479

    [20]

    Briggs D, Seach M P 1994 Practical Surface Analysis (Vol. 1) (Chichester: Wiley) p607

    [21]

    Foord J S, Jackman R B, Allen G C 1984 Philos. Mag. A 49 657

    [22]

    Martinez C, Cremer R, Neuschütz D, Richthofen A V 2002 Anal. Bioanal. Chem. 374 742

    [23]

    Huang H Z 2007 Surface Chemical Analysis (Shanghai: East China University of Science and Technology Press) p20-21 (in Chinese) [黄惠忠 2007 表面化学分析 (上海: 华东理工大学出版社) 第20-21页]

    [24]

    Zhang W, Xu F Q, Wang G D, Zhang W H, Li Z M, Wang L W, Chen T X 2011 Acta Phys. Sin. 60 017104 (in Chinese) [张旺, 徐法强, 王国栋, 张文华, 李宗木, 王立武, 陈铁锌 2011 物理学报 60 017104]

    [25]

    Packard W E, Dow J D 1997 Phys. Rev. B 55 15643

  • [1]

    Schmitt A L, Higgins J M, Szczech J R, Jin S 2010 J. Mater. Chem. 20 223

    [2]

    Zhang Q, Takeguchi M, Tanaka M, Furuya K 2002 J. Cryst. Growth 237-239 1956

    [3]

    Li W C, Zou Z Q, Wang D, Shi G M 2012 Acta Phys. Sin. 61 066801 (in Chinese) [李玮聪, 邹志强, 王丹, 石高明 2012 物理学报 61 066801]

    [4]

    Zou Z Q, Li W C, Liang J M, Wang D 2011 Acta Mater. 59 7473

    [5]

    Lian Y C, Chen L J 1986 Appl. Phys. Lett. 48 359

    [6]

    Mahan J E 2004 Thin Solid Films 461 152

    [7]

    Higgins J M, Schmitt A L, Guzei I A, Jin S 2008 J. Am. Chem. Soc. 130 16086

    [8]

    Luo W H, Li H, Lin Z B, Tang X F 2010 Acta Phys. Sin. 59 8783 (in Chinese) [罗文辉, 李涵, 林泽冰, 唐新峰 2010 物理学报 59 8783]

    [9]

    Petrova L I, Dudkin L D, Fedorov M I, Solomkin F Y, Zaitsev V K, Eremin I S 2002 Tech. Phys. 47 550

    [10]

    Higashi S, Kocán P, Tochihara H 2009 Phys. Rev. B 79 205312

    [11]

    Kumar A, Tallarida M, Hansmann M, Starke U, Horn K 2004 J. Phys. D: Appl. Phys. 37 1083

    [12]

    Tatsuoka H, Koga T, Matsuda K, Nose Y, Souno Y, Kuwabara H, Brown P D, Humphreys C J 2001 Thin Solid Films 381 231

    [13]

    Hou Q R, Zhao W, Chen Y B, He Y J 2008 Phys. Stat. Sol. (a) 205 2687

    [14]

    Stevens M, He Z, Smith D J, Bennett P A 2003 J. Appl. Phys. 93 5670

    [15]

    Zou Z Q, Wang H, Wang D, Wang Q K, Mao J J, Kong X Y 2007 Appl. Phys. Lett. 90 133111

    [16]

    Zou Z Q, Li W C 2011 Phys. Lett. A 375 849

    [17]

    Ohtsu N, Oku M, Nomura A, Sugawara T, Shishido T, Wagatsuma K 2008 Appl. Surf. Sci. 254 3288

    [18]

    Audi A A, Sherwood P M A 2002 Surf. Interface Anal. 33 274

    [19]

    Süzer S, Ertas N, Ataman O Y 1999 Appl. Spectrosc. 53 479

    [20]

    Briggs D, Seach M P 1994 Practical Surface Analysis (Vol. 1) (Chichester: Wiley) p607

    [21]

    Foord J S, Jackman R B, Allen G C 1984 Philos. Mag. A 49 657

    [22]

    Martinez C, Cremer R, Neuschütz D, Richthofen A V 2002 Anal. Bioanal. Chem. 374 742

    [23]

    Huang H Z 2007 Surface Chemical Analysis (Shanghai: East China University of Science and Technology Press) p20-21 (in Chinese) [黄惠忠 2007 表面化学分析 (上海: 华东理工大学出版社) 第20-21页]

    [24]

    Zhang W, Xu F Q, Wang G D, Zhang W H, Li Z M, Wang L W, Chen T X 2011 Acta Phys. Sin. 60 017104 (in Chinese) [张旺, 徐法强, 王国栋, 张文华, 李宗木, 王立武, 陈铁锌 2011 物理学报 60 017104]

    [25]

    Packard W E, Dow J D 1997 Phys. Rev. B 55 15643

  • [1] Huang Ren-Zhong, Liu Liu, Yang Wen-Jing. STM tip-induced atomic motion on the top of film supported by a metal substrate. Acta Physica Sinica, 2011, 60(11): 116803. doi: 10.7498/aps.60.116803
    [2] Yang Jing-Jing, Du Wen-Han. Scanning tunnelling microscope investigation of the TiSi2 nano-islands on Sr/Si(100) surface. Acta Physica Sinica, 2011, 60(3): 037301. doi: 10.7498/aps.60.037301
    [3] Yang Meng-Sheng, Yi Tai-Min, Zheng Feng-Cheng, Tang Yong-Jian, Zhang Lin, Du Kai, Li Ning, Zhao Li-Ping, Ke Bo, Xing Pi-Feng. Surface oxidation of as-deposit uranium film characterized by X-ray photoelectron spectroscopy. Acta Physica Sinica, 2018, 67(2): 027301. doi: 10.7498/aps.67.20172055
    [4] XU ZHUO, CHEN GUANG-DE, YUAN JIN-SHE, QI MING, LI AI-ZHEN. XPS AND AES INVESTIGATION OF GaN FILMS GROWN BY MBE. Acta Physica Sinica, 2001, 50(12): 2429-2433. doi: 10.7498/aps.50.2429
    [5] Xu Dan, Yin Jun, Sun Hao-Hua, Wang Guan-Yong, Qian Dong, Guan Dan-Dan, Li Yao-Yi, Guo Wan-Lin, Liu Can-Hua, Jia Jin-Feng. Scanning tunneling microscopy study of h-BN thin films grown on Cu foils. Acta Physica Sinica, 2016, 65(11): 116801. doi: 10.7498/aps.65.116801
    [6] Zhao Kun, Feng Yu-Qing, Zhu Tao, Zhan Wen-Shan. Thermal stability of magnetic tunnel junctions investigated by x-ray photoelectron spectroscopy. Acta Physica Sinica, 2005, 54(11): 5372-5376. doi: 10.7498/aps.54.5372
    [7] Liu Chang-Sheng, Li Yong-Hua, Meng Fan-Ling, Wang Yu-Ming, Zheng Wei-Tao. X-ray photoelectron spectroscopy analysis of the effect of thickness on the transformation temperature of NiTi alloy thin films. Acta Physica Sinica, 2009, 58(4): 2742-2745. doi: 10.7498/aps.58.2742
    [8] Song Zhen, Ou Gu-Ping, Gui Wen-Ming, Zhang Fu-Jia. Surface analysis of LiBq4/ITO and LiBq4/CuPc/ITO using atomic force microscopy and x-ray photoelectron spectroscopy. Acta Physica Sinica, 2005, 54(12): 5717-5722. doi: 10.7498/aps.54.5717
    [9] Zhang Wang, Xu Fa-Qiang, Wang Guo-Dong, Zhang Wen-Hua, Li Zong-Mu, Wang Li-Wu, Chen Tie-Xin. Thickness dependence of the interfacial interaction for the Fe/ZnO (0001) system studied by photoemission. Acta Physica Sinica, 2011, 60(1): 017104. doi: 10.7498/aps.60.017104
    [10] XU BEI-XUE, WU JUN-LEI, LIU WEI-MIN, SHAO QING-YI, LIU SHENG, XUE ZENG-QUAN, WU QUAN-DE, YANY HAI. ENHANCED PHOTOEMISSION FROM METAL NANOPARTICLE COMPOSITE THIN FILMS (Ag-BaO) DOPED WITH RARE-EARTH ELEMENTS . Acta Physica Sinica, 2001, 50(5): 977-980. doi: 10.7498/aps.50.977
  • Citation:
Metrics
  • Abstract views:  4894
  • PDF Downloads:  753
  • Cited By: 0
Publishing process
  • Received Date:  28 April 2012
  • Accepted Date:  14 June 2012
  • Published Online:  20 November 2012

Scanning tunneling mircroscopy and X-ray photoelectron spectroscopy studies of MnSi film and MnSi1.7 nanowires grown on Si substrates

  • 1. Instrumental Analysis Center, Shanghai Jiaotong University, Shanghai 200240, China;
  • 2. Department of Physics, Shanghai Jiaotong University, Shanghai 200240, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 61176017) and the Innovation Program of Shanghai Municipal Education Commission, China (Grant No. 12ZZ025).

Abstract: Manganese silicides are promising industrial materials in optoelectronics and microelectronics fields. The study of electronic structures of manganese silicide film and nanowires is essential for a deeper understanding of their properties. In this paper, MnSi film and MnSi1.7 nanowires are prepared by molecular beam epitaxy method, and then observed by scanning tunneling microscopy (STM). The Mn 2p and Si 2p of MnSi film and MnSi1.7 nanowires are comprehensively studied using X-ray photoelectron spectroscopy (XPS). The results demonstrate that MnSi film with ~ 0.9 nm high is √3 × √3 reconstruction, and that the MnSi1.7 nanowires are about ~ 3 nm high, 16—18 nm wide and 500—1500 nm long. The binding energies of the Mn 2p1/2 level and Mn 2p3/2 level for MnSi film are 649.7 and 638.7 eV, respectively, which coincide with those of MnSi1.7 nanowires. The Mn 2p3/2 and Mn 2p1/2 peaks which are located at 640—645 eV and ~653.8 eV indicate that an oxide layer formed on the surfaces of film and nanowires because of short-time exposure to the atmosphere. The negative chemical shifts for MnSi film and MnSi1.7 nanowires from Si2p spectra indicate that with the formation of manganese silicides, the chemical state of Si is changed.

Reference (25)

Catalog

    /

    返回文章
    返回