Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical study of luminance of GaN quantum dots planted in quantum well

Wang Du-Yang Sun Hui-Qing Xie Xiao-Yu Zhang Pan-Jun

Theoretical study of luminance of GaN quantum dots planted in quantum well

Wang Du-Yang, Sun Hui-Qing, Xie Xiao-Yu, Zhang Pan-Jun
PDF
Get Citation
  • A theoretical simulation of electrical and optical characteristics of quantum dot (QD) light-emitting diodes depending on the QD sizes is conducted with APSYS software. The electron and hole concentration in the LED and the radioactive recombination rate are studied. Simulation results show that with the increase of the QD size, the emission wavelength has a red shift. With the radius of QD increasing from 1.8 nm to 13 nm , the red shift of emission wavelength has reaches 309.6 meV. The use of the QDs with different sizes planted in quantum well can achieve full-color display with a single LED. When different quantum wells are planted with different QDs, the LED turns into a muti-wavelength luminescence even white LED. We can improve the intensity of each wavelength by adjusting the surface density of QDs. The luminous uniforming of the muti-wavelength LED can be effective improved by adjusting the QD surface density.
    • Funds: Project supported by the the National Natural Science Foundation of China (Grant No. 60877069), and the Strategic Emerging Industries, the Special Fund for LED Industry Projects of Guangdong Province, China (Grant Nos. 2011A081301004, 2012A080304006).
    [1]

    Nakamura S,Senoh M,Nagahama S,Iwasa N,Yamada T,Matsushita T,Sugimoto Y,Kiyoku H 1996 Appl. Phys. Lett. 69 3034

    [2]

    El-Masry N A,Piner E L,Liu S X,Bedair S M 1998 Appl. Phys. Lett. 72 40

    [3]

    Narukawa Y, Kawakami Y, Funato M, Fujita S, Fujita S, Nakamura S 1997 Appl. Phys. Lett. 70 981

    [4]

    Weisbuch C, Nagle J 1990 Science and Engineering of 1D and 0D Semiconductor Systems (New York: Plenum Press) p319

    [5]

    Xia C S, Hu D W, Wang C, Li Z F, Chen X S, Lu W, Simon Z M, Li Z Q 2006 Opt. Quantum Electron 38 1077

    [6]

    Li W J, Zhang B, Xu W L, Lu W 2009 Acta Phys. Sin. 58 3421 (in Chinese) [李为军, 张波, 徐文兰, 陆卫 2009 物理学报 58 3421]

    [7]

    Asgari A,Asadzadeh S 2010 J. Phys.: Conf. Ser. 248 012020

    [8]

    Winkelnkemper M,Schliwa A,Bimberg D 2006 Phys. Rev. B 74 155322

    [9]

    Wang Y W,Wu H R 2012 Acta Phys. Sin. 61 106102 (in Chinese) [王艳文, 吴花蕊 2012 物理学报 61 106102]

    [10]

    Hirayama H, Tanaka S, Ramvall P, Aoyagi Y 1998 Appl. Phys. Lett. 72 1736

    [11]

    Wang J, Nozaki M, Lachab M, Ishikawa Y, Qhalid Fareed R S, Wang T, Hao M, Sakai S 1999 Appl. Phys. Lett. 75 950

    [12]

    Wang T Q, Yu C Y, Liu Y M, Lu P F 2009 Acta Phys. Sin. 58 5618 (in Chinese) [王天琪, 俞重远, 刘玉敏, 芦鹏飞 2009 物理学报 58 5618]

    [13]

    Yamada M, Narukawa Y, Mukai T 2002 J. Appl. Phys. 41 246

    [14]

    Okamoto K, Saijo S, Kawakami Y, Fujita S G, Terazima M, Mukai T, Shinmiya G, Nakamura S 2001 Proc. SPIE 4278 150

  • [1]

    Nakamura S,Senoh M,Nagahama S,Iwasa N,Yamada T,Matsushita T,Sugimoto Y,Kiyoku H 1996 Appl. Phys. Lett. 69 3034

    [2]

    El-Masry N A,Piner E L,Liu S X,Bedair S M 1998 Appl. Phys. Lett. 72 40

    [3]

    Narukawa Y, Kawakami Y, Funato M, Fujita S, Fujita S, Nakamura S 1997 Appl. Phys. Lett. 70 981

    [4]

    Weisbuch C, Nagle J 1990 Science and Engineering of 1D and 0D Semiconductor Systems (New York: Plenum Press) p319

    [5]

    Xia C S, Hu D W, Wang C, Li Z F, Chen X S, Lu W, Simon Z M, Li Z Q 2006 Opt. Quantum Electron 38 1077

    [6]

    Li W J, Zhang B, Xu W L, Lu W 2009 Acta Phys. Sin. 58 3421 (in Chinese) [李为军, 张波, 徐文兰, 陆卫 2009 物理学报 58 3421]

    [7]

    Asgari A,Asadzadeh S 2010 J. Phys.: Conf. Ser. 248 012020

    [8]

    Winkelnkemper M,Schliwa A,Bimberg D 2006 Phys. Rev. B 74 155322

    [9]

    Wang Y W,Wu H R 2012 Acta Phys. Sin. 61 106102 (in Chinese) [王艳文, 吴花蕊 2012 物理学报 61 106102]

    [10]

    Hirayama H, Tanaka S, Ramvall P, Aoyagi Y 1998 Appl. Phys. Lett. 72 1736

    [11]

    Wang J, Nozaki M, Lachab M, Ishikawa Y, Qhalid Fareed R S, Wang T, Hao M, Sakai S 1999 Appl. Phys. Lett. 75 950

    [12]

    Wang T Q, Yu C Y, Liu Y M, Lu P F 2009 Acta Phys. Sin. 58 5618 (in Chinese) [王天琪, 俞重远, 刘玉敏, 芦鹏飞 2009 物理学报 58 5618]

    [13]

    Yamada M, Narukawa Y, Mukai T 2002 J. Appl. Phys. 41 246

    [14]

    Okamoto K, Saijo S, Kawakami Y, Fujita S G, Terazima M, Mukai T, Shinmiya G, Nakamura S 2001 Proc. SPIE 4278 150

  • [1] Jin Yu-Zhe, Hu Yi-Pei, Zeng Xiang-Hua, Yang Yi-Jun. Gamma radiation effect on GaN-based blue light-emitting diodes with multi-quantum well. Acta Physica Sinica, 2010, 59(2): 1258-1262. doi: 10.7498/aps.59.1258
    [2] Zhang Pan-Jun, Sun Hui-Qing, Guo Zhi-You, Wang Du-Yang, Xie Xiao-Yu, Cai Jin-Xin, Zheng Huan, Xie Nan, Yang Bin. The spectrum-control of dual-wavelength LED with quantum dots planted in quantum wells. Acta Physica Sinica, 2013, 62(11): 117304. doi: 10.7498/aps.62.117304
    [3] Zhang Yun-Yan, Fan Guan-Han. Theoretical study of GaN interval layers and quantum well barrier layers of different doping types in dual-wavelength LED. Acta Physica Sinica, 2011, 60(1): 018502. doi: 10.7498/aps.60.018502
    [4] Chen Jun, Fan Guang-Han, Zhang Yun-Yan. The investigation of performance improvement of GaN-based dual-wavelength light-emitting diodes with various thickness of quantum barriers. Acta Physica Sinica, 2012, 61(17): 178504. doi: 10.7498/aps.61.178504
    [5] Wang Yan-Wen, Wu Hua-Rui. Exciton states and optical properties in zinc-blende GaN/AlGaN quantum dot. Acta Physica Sinica, 2012, 61(10): 106102. doi: 10.7498/aps.61.106102
    [6] Xing Huai-Zhong, Shen Ye, Yu Jian-Guo, Lü Bin, Mao Hui-Bing, Wang Ji-Qing. Curie-temperature modulation by polarization-induced built-in electric fields in Mn δ-doped GaN/AlGaN quantum wells. Acta Physica Sinica, 2007, 56(6): 3453-3457. doi: 10.7498/aps.56.3453
    [7] Li Pei-Xian, Hao Yue, Fan Long, Zhang Jin-Cheng, Zhang Jin-Feng, Zhang Xiao-Ju. AlGaN/GaN heterojunction wavefunction half analytic model based on quantum distu rbance. Acta Physica Sinica, 2003, 52(12): 2985-2988. doi: 10.7498/aps.52.2985
    [8] Liu Yang, Chai Chang-Chun, Yu Xin-Hai, Fan Qing-Yang, Yang Yin-Tang, Xi Xiao-Wen, Liu Sheng-Bei. Damage effects and mechanism of the GaN high electron mobility transistor caused by high electromagnetic pulse. Acta Physica Sinica, 2016, 65(3): 038402. doi: 10.7498/aps.65.038402
    [9] Huang Bin-Bin, Xiong Chuan-Bing, Zhang Chao-Yu, Huang Ji-Feng, Wang Guang-Xu, Tang Ying-Wen, Quan Zhi-Jue, Xu Long-Quan, Zhang Meng, Wang Li, Fang Wen-Qing, Liu Jun-Lin, Jiang Feng-Yi. Electroluminescence properties of vertical structure GaN based LED on silicon and copper submount at different temperatures and current densities. Acta Physica Sinica, 2014, 63(21): 217806. doi: 10.7498/aps.63.217806
    [10] Zhang Yun-Yan, Fan Guang-Han, Zhang Yong, Zheng Shu-Wen. Effect of spectrum-control in dual-wavelength light-emitting diode by doped GaN interval layer. Acta Physica Sinica, 2011, 60(2): 028503. doi: 10.7498/aps.60.028503
  • Citation:
Metrics
  • Abstract views:  5069
  • PDF Downloads:  1066
  • Cited By: 0
Publishing process
  • Received Date:  15 May 2012
  • Accepted Date:  13 June 2012
  • Published Online:  20 November 2012

Theoretical study of luminance of GaN quantum dots planted in quantum well

  • 1. Laboratory of Nanophotonic Functional Materials and Devices, Institute of Opto-Electronic Materials and Technology, South China Normal University, Guangzhou 510631, China
Fund Project:  Project supported by the the National Natural Science Foundation of China (Grant No. 60877069), and the Strategic Emerging Industries, the Special Fund for LED Industry Projects of Guangdong Province, China (Grant Nos. 2011A081301004, 2012A080304006).

Abstract: A theoretical simulation of electrical and optical characteristics of quantum dot (QD) light-emitting diodes depending on the QD sizes is conducted with APSYS software. The electron and hole concentration in the LED and the radioactive recombination rate are studied. Simulation results show that with the increase of the QD size, the emission wavelength has a red shift. With the radius of QD increasing from 1.8 nm to 13 nm , the red shift of emission wavelength has reaches 309.6 meV. The use of the QDs with different sizes planted in quantum well can achieve full-color display with a single LED. When different quantum wells are planted with different QDs, the LED turns into a muti-wavelength luminescence even white LED. We can improve the intensity of each wavelength by adjusting the surface density of QDs. The luminous uniforming of the muti-wavelength LED can be effective improved by adjusting the QD surface density.

Reference (14)

Catalog

    /

    返回文章
    返回