Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Density functional theory study on transparent conductive oxide CuScO2

Fang Zhi-Jie Mo Man Zhu Ji-Zhen Yang Hao

Density functional theory study on transparent conductive oxide CuScO2

Fang Zhi-Jie, Mo Man, Zhu Ji-Zhen, Yang Hao
PDF
Get Citation
  • Using the first-principle method within the generalized gradient approximation, in this paper we study the band structure, state density and doping level of transparent conductive oxide CuScO2. The calculated results show that the valence band of CuScO2 is composed mainly of 3d of Cu, and 2p of O; while the conduct band is comprised mainly of 3d of Sc. Through the +U correction, with the increase of the value of U, the conduct band of CuScO2 becomes split, and results in the enlarged band gap, which shows that the +U correction can improve the band gap of CuScO2. By comparing all kinds of dopant level in CuScO2, it found that the substitution of Mg for Sc can effectively improve the p-type conductivity in CuScO2.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11147195), Guangxi Experiment Centre of Science and Technology (Grant No. LGZXKF201204), and the Science Plan Projects of Guangxi Provincial Education Department (Grant No. 200103YB102).
    [1]

    Lewis B G and Panine D C 2000 Mater. Res. Bull. 25 22

    [2]

    Wang Z G, Zhang Y, Wen Y H and Zhu Z Z 2010 Acta Phys. Sin. 59 2051 (in Chinese) [王志刚, 张杨, 文玉华, 朱梓忠 2010 物理学报 59 2051]

    [3]

    Deng B, Sun H Q, Guo Z Y and Gao X Q 2010 Acta Phys. Sin. 59 1212 (in Chinese) [邓贝, 孙慧卿, 郭志友, 高小奇 2010 物理学报 59 1212]

    [4]

    Kawazoe H, Yasukawa M, Hyodo H, Kurita M, Yanagi H, Hosono H 1997 Nature 389 939

    [5]

    Yanagi H, Inoue S, Ueda K, Kawazoe H, Hosono H 2000 J. Appl. Phys. 88 4159

    [6]

    Nie X, Wei S H, Zhang S B 2002 Phys. Rev. Lett. 88 066405

    [7]

    Yanagi H, Kawazoe H, Kudo A, Yasukawa M, Hosono H 2000 J. Electroceram 4 427

    [8]

    Katayama-Ylshida H, Koyanagi T, Funashima H, Harima H, Yanase A 2003 Solid. State.Commun. 126 135

    [9]

    Koyanagi T, Harima H, Yanase A, Katayama-Yoshida H 2003 J. Phys. Chem. Solid. 64 144

    [10]

    Hamada I, Katayama-Yoshida H 2003 Physica B 376 808

    [11]

    Ueda K, Hase T, Yanagi H, Kawazoe H, Hosono H, Ohta H, Orita M, Hirano M 2001 J. Appl. Phys. 89 1790

    [12]

    Yanagi H, Hase T, Ibuki S, Ueda K, Hosono H 2001 Appl. Phys. Lett. 78 1583

    [13]

    Kakehi Y, Satoh K, Yotsuya T, Masuko K, Ashida A 2007 J. Appl. Phys. 46 4228

    [14]

    Ingram B J, Harder B J, Hrabe N W 2004 Chem. Mater 16 5623

    [15]

    Fang Z J, Shi L J, Liu Y H 2008 Chin. Phys. B 17 4279

    [16]

    Fang Z J, Shi L J 2008 Phys. Lett. A 372 3759

    [17]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [18]

    Wang Y, Perdew J P 1991 Phys. Rev. B 44 13298

    [19]

    Blochl P E 1994 Phys. Rev. B 50 17953

    [20]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [21]

    Pack J D, Monkhorst H J 1977 Phys. Rev. B 16 1748

    [22]

    Wei S H 2004 Comput. Mat. Sci. 30 337

    [23]

    Zhang S B, Wei S H, Zunger A, Katayama-Yoshida H 1998 Phys. Rev. B 57 964

    [24]

    Wei S H, Zhang S B 2002 Phys. Rev. B 66 155211

    [25]

    Murnaghan F D 1944 Proc. Natl. Acad. Sci. U.S.A 30 244

    [26]

    Doumerc J P, Ammar A, Wichainchai A, Pouchard M, Hagenmuller P 1987 J. Phys. Chem. Solids 48 37

  • [1]

    Lewis B G and Panine D C 2000 Mater. Res. Bull. 25 22

    [2]

    Wang Z G, Zhang Y, Wen Y H and Zhu Z Z 2010 Acta Phys. Sin. 59 2051 (in Chinese) [王志刚, 张杨, 文玉华, 朱梓忠 2010 物理学报 59 2051]

    [3]

    Deng B, Sun H Q, Guo Z Y and Gao X Q 2010 Acta Phys. Sin. 59 1212 (in Chinese) [邓贝, 孙慧卿, 郭志友, 高小奇 2010 物理学报 59 1212]

    [4]

    Kawazoe H, Yasukawa M, Hyodo H, Kurita M, Yanagi H, Hosono H 1997 Nature 389 939

    [5]

    Yanagi H, Inoue S, Ueda K, Kawazoe H, Hosono H 2000 J. Appl. Phys. 88 4159

    [6]

    Nie X, Wei S H, Zhang S B 2002 Phys. Rev. Lett. 88 066405

    [7]

    Yanagi H, Kawazoe H, Kudo A, Yasukawa M, Hosono H 2000 J. Electroceram 4 427

    [8]

    Katayama-Ylshida H, Koyanagi T, Funashima H, Harima H, Yanase A 2003 Solid. State.Commun. 126 135

    [9]

    Koyanagi T, Harima H, Yanase A, Katayama-Yoshida H 2003 J. Phys. Chem. Solid. 64 144

    [10]

    Hamada I, Katayama-Yoshida H 2003 Physica B 376 808

    [11]

    Ueda K, Hase T, Yanagi H, Kawazoe H, Hosono H, Ohta H, Orita M, Hirano M 2001 J. Appl. Phys. 89 1790

    [12]

    Yanagi H, Hase T, Ibuki S, Ueda K, Hosono H 2001 Appl. Phys. Lett. 78 1583

    [13]

    Kakehi Y, Satoh K, Yotsuya T, Masuko K, Ashida A 2007 J. Appl. Phys. 46 4228

    [14]

    Ingram B J, Harder B J, Hrabe N W 2004 Chem. Mater 16 5623

    [15]

    Fang Z J, Shi L J, Liu Y H 2008 Chin. Phys. B 17 4279

    [16]

    Fang Z J, Shi L J 2008 Phys. Lett. A 372 3759

    [17]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [18]

    Wang Y, Perdew J P 1991 Phys. Rev. B 44 13298

    [19]

    Blochl P E 1994 Phys. Rev. B 50 17953

    [20]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [21]

    Pack J D, Monkhorst H J 1977 Phys. Rev. B 16 1748

    [22]

    Wei S H 2004 Comput. Mat. Sci. 30 337

    [23]

    Zhang S B, Wei S H, Zunger A, Katayama-Yoshida H 1998 Phys. Rev. B 57 964

    [24]

    Wei S H, Zhang S B 2002 Phys. Rev. B 66 155211

    [25]

    Murnaghan F D 1944 Proc. Natl. Acad. Sci. U.S.A 30 244

    [26]

    Doumerc J P, Ammar A, Wichainchai A, Pouchard M, Hagenmuller P 1987 J. Phys. Chem. Solids 48 37

  • [1] Wan Wen-Jian, Yao Ruo-He, Geng Kui-Wei. Electronic structure of CuAlS2 doped with Mg and Zn. Acta Physica Sinica, 2011, 60(6): 067103. doi: 10.7498/aps.60.067103
    [2] Wang Wei, Sun Jia-Fa, Liu Mei, Liu Su. First-principles calculations on the electronic band structure of β-Pyrochlore superconductors AOs2O6 (A=K,Rb,Cs). Acta Physica Sinica, 2009, 58(8): 5632-5639. doi: 10.7498/aps.58.5632
    [3] Pan Hong-Zhe, Zhou Hai-Ping, Zhu Wen-Jun, Xu Ming. First-principles study on the electrical structures and optical properties of β-Si3N4. Acta Physica Sinica, 2006, 55(7): 3585-3589. doi: 10.7498/aps.55.3585
    [4] Guan Li, Liu Bao-Ting, Li Xu, Zhao Qing-Xun, Wang Ying-Long, Guo Jian-Xin, Wang Shu-Biao. Electronic structure and optical properties of fluorite-structure TiO2. Acta Physica Sinica, 2008, 57(1): 482-487. doi: 10.7498/aps.57.482
    [5] Tan Xing-Yi, Jin Ke-Xin, Chen Chang-Le, Zhou Chao-Chao. Electronic structure of YFe2B2by first-principles calculation. Acta Physica Sinica, 2010, 59(5): 3414-3417. doi: 10.7498/aps.59.3414
    [6] Yu Feng, Wang Pei-Ji, Zhang Chang-Wen. Electronic structure and optical properties of Al-doped SnO2. Acta Physica Sinica, 2011, 60(2): 023101. doi: 10.7498/aps.60.023101
    [7] Lu Yao, Wang Pei-Ji, Zhang Chang-Wen, Jiang Lei, Zhang Guo-Lian, Song Peng. Material opto-electronic properties of In, N co-doped SnO2 studied by first principles. Acta Physica Sinica, 2011, 60(6): 063103. doi: 10.7498/aps.60.063103
    [8] Lu Yao, Wang Pei-Ji, Zhang Chang-Wen, Feng Xian-Yang, Jiang Lei, Zhang Guo-Lian. Study of material properties of Fe, S Co-doped SnO2 by first principles. Acta Physica Sinica, 2012, 61(2): 023101. doi: 10.7498/aps.61.023101
    [9] Chen Dong, Xiao He-Yang, Jia Wei, Chen Hong, Zhou He-Gen, Li Yi, Ding Kai-Ning, Zhang Yong-Fan. Electronic structures and optical properties of AAl2C4 (A=Zn, Cd, Hg; C=S, Se) semiconductors. Acta Physica Sinica, 2012, 61(12): 127103. doi: 10.7498/aps.61.127103
    [10] Liu Huan, Li Gong-Ping, Xu Nan-Nan, Lin Qiao-Lu, Yang Lei, Wang Cang-Long. A simulation study of structural and optical properties in Cu ions implantation single-crystal rutile. Acta Physica Sinica, 2016, 65(20): 206102. doi: 10.7498/aps.65.206102
  • Citation:
Metrics
  • Abstract views:  1344
  • PDF Downloads:  604
  • Cited By: 0
Publishing process
  • Received Date:  30 March 2012
  • Accepted Date:  17 June 2012
  • Published Online:  20 November 2012

Density functional theory study on transparent conductive oxide CuScO2

  • 1. Department of Information and Computation of Science, Guangxi University of Technology, Liuzhou 545006, China;
  • 2. State Key Laboratory for Superlattics and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 11147195), Guangxi Experiment Centre of Science and Technology (Grant No. LGZXKF201204), and the Science Plan Projects of Guangxi Provincial Education Department (Grant No. 200103YB102).

Abstract: Using the first-principle method within the generalized gradient approximation, in this paper we study the band structure, state density and doping level of transparent conductive oxide CuScO2. The calculated results show that the valence band of CuScO2 is composed mainly of 3d of Cu, and 2p of O; while the conduct band is comprised mainly of 3d of Sc. Through the +U correction, with the increase of the value of U, the conduct band of CuScO2 becomes split, and results in the enlarged band gap, which shows that the +U correction can improve the band gap of CuScO2. By comparing all kinds of dopant level in CuScO2, it found that the substitution of Mg for Sc can effectively improve the p-type conductivity in CuScO2.

Reference (26)

Catalog

    /

    返回文章
    返回