Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A Monte Carlo simulation study on growth mechanism of horizontal nanowires on crystal surface

Lan Mu Xiang Gang Gu Gang-Xu Zhang Xi

A Monte Carlo simulation study on growth mechanism of horizontal nanowires on crystal surface

Lan Mu, Xiang Gang, Gu Gang-Xu, Zhang Xi
PDF
Get Citation
  • With the kinetic Monte Carlo simulation of smooth (001) surface of symmetry-broken simple cubic crystal in fluid with low supersatuaration rate, the mechanism of nanowire growth based on crystal nuclei on the surface is discovered and the morphology of nanowire is obtained. The dependences of nanowire morphology on thermal roughness in the longitudinal and latitudinal direction and growth time on the anisotropic surface of the crystal are further discussed. The relations of nanowire growth rate with thermal roughness, supersaturation rate, surface size and diffusion rate on the surface are then systematically studied.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos.11004141, 11004142, 11174212), and the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No.11-0351).
    [1]

    Meyer D J, Webb D A, Ward M G, Sellar J D, Zeng P Y 2001 J. Mater. Sci. Semicond. Process 4 529

    [2]

    Singh R S, Rangari V K, Sanagapalli S, Jayaraman V, Mahendra S, Singh V P 2004 Solar Energy Materials & Solar Cells 82 315

    [3]

    Talapin D V, Lee J S, Kovalenko M V, Shevchenko E V 2010 Chemical Reviews 110 389

    [4]

    Arias A C, MacKenzie J D, McCulloch L, Rivnay J, Salleo A 2010 Chemical Reviews 110 3

    [5]

    Goldberger J, Hochbaum A I, Fan R, Yang P D 2006 Nano Lett. 6 973

    [6]

    Persson A I, Larsson M W, Stenström S, Qhlsson B J, Samuelson L, Wallenberg L R 2004 Nature Material 3 677

    [7]

    Zhang X, Lew K K, Nimmatoori P, Redwing J M, Dickey E C 2007 Nano Lett. 7 3241

    [8]

    Lai Y F 2010 Acta Phys. Sin. 59 8814 (in Chinese) [赖云锋 2010 物理学报 59 8814]

    [9]

    Borgström M T, Immink G, Ketelaars B, Algra R, Bakkers E 2007 Nature Nanotechnology 2 541

    [10]

    Sinyagin A Y, Belov A, Tang Z, Kotov N A 2006 J. Phys. Chem. B 110 7500

    [11]

    Gilmer G H, Bennema P 1972 Journal of Applied Physics 43 1347

    [12]

    Rak M, Izdebski M, Brozi A 2001 Computer Physics Communications 138 250

    [13]

    Zhu G, Lu G W, Li Y F, Lan J H, Zhang J, Zheng Q B, Huang Q S, Sun X, Xia H R 2006 Journal of Synthetic Crystals 35 24 (in Chinese) [朱阁,卢贵武, 李英峰, 蓝建慧,张军,郑庆彬,黄乔松, 孙洵, 夏海瑞 2006 人工晶体学报 35 24]

    [14]

    Lee J W, Hwang N M, Kim D Y 2003 Journal of Crystal Growth 250 538

    [15]

    Xu S, Ding Y, Wei Y, Fang H, Shen Y, Sood A K, Polla D L, Wang Z L 2009 Journal of American Chemical Society 131 6670

  • [1]

    Meyer D J, Webb D A, Ward M G, Sellar J D, Zeng P Y 2001 J. Mater. Sci. Semicond. Process 4 529

    [2]

    Singh R S, Rangari V K, Sanagapalli S, Jayaraman V, Mahendra S, Singh V P 2004 Solar Energy Materials & Solar Cells 82 315

    [3]

    Talapin D V, Lee J S, Kovalenko M V, Shevchenko E V 2010 Chemical Reviews 110 389

    [4]

    Arias A C, MacKenzie J D, McCulloch L, Rivnay J, Salleo A 2010 Chemical Reviews 110 3

    [5]

    Goldberger J, Hochbaum A I, Fan R, Yang P D 2006 Nano Lett. 6 973

    [6]

    Persson A I, Larsson M W, Stenström S, Qhlsson B J, Samuelson L, Wallenberg L R 2004 Nature Material 3 677

    [7]

    Zhang X, Lew K K, Nimmatoori P, Redwing J M, Dickey E C 2007 Nano Lett. 7 3241

    [8]

    Lai Y F 2010 Acta Phys. Sin. 59 8814 (in Chinese) [赖云锋 2010 物理学报 59 8814]

    [9]

    Borgström M T, Immink G, Ketelaars B, Algra R, Bakkers E 2007 Nature Nanotechnology 2 541

    [10]

    Sinyagin A Y, Belov A, Tang Z, Kotov N A 2006 J. Phys. Chem. B 110 7500

    [11]

    Gilmer G H, Bennema P 1972 Journal of Applied Physics 43 1347

    [12]

    Rak M, Izdebski M, Brozi A 2001 Computer Physics Communications 138 250

    [13]

    Zhu G, Lu G W, Li Y F, Lan J H, Zhang J, Zheng Q B, Huang Q S, Sun X, Xia H R 2006 Journal of Synthetic Crystals 35 24 (in Chinese) [朱阁,卢贵武, 李英峰, 蓝建慧,张军,郑庆彬,黄乔松, 孙洵, 夏海瑞 2006 人工晶体学报 35 24]

    [14]

    Lee J W, Hwang N M, Kim D Y 2003 Journal of Crystal Growth 250 538

    [15]

    Xu S, Ding Y, Wei Y, Fang H, Shen Y, Sood A K, Polla D L, Wang Z L 2009 Journal of American Chemical Society 131 6670

  • [1] Hu Lin-Hua, Dai Jun, Liu Wei-Qing, Wang Kong-Jia, Dai Song-Yuan. Growth kinetics and growth process control of nanocrystalline TiO2 anatase. Acta Physica Sinica, 2009, 58(2): 1115-1119. doi: 10.7498/aps.58.1115
    [2] Zhou Guo-Rong, Gao Qiu-Ming. Freezing of Ni nanowires investigated by molecular dynamics simulation. Acta Physica Sinica, 2007, 56(3): 1499-1505. doi: 10.7498/aps.56.1499
    [3] Li Wen-Fang, Du Jin-Jin, Wen Rui-Juan, Yang Peng-Fei, Li Gang, Zhang Tian-Cai. Single-atom transfer in a strongly coupled cavity quantum electrodynamics: experiment and Monte Carlo simulation. Acta Physica Sinica, 2014, 63(24): 244205. doi: 10.7498/aps.63.244205
    [4] Fan Xiao-Hui, Zhao Xing-Yu, Wang Li-Na, Zhang Li-Li, Zhou Heng-Wei, Zhang Jin-Lu, Huang Yi-Neng. Monte Carlo simulations of the relaxation dynamics of the spatial relaxation modes in the molecule-string model. Acta Physica Sinica, 2011, 60(12): 126401. doi: 10.7498/aps.60.126401
    [5] Hua Yu-Chao, Dong Yuan, Cao Bing-Yang. Monte Carlo simulation of phonon ballistic diffusive heat conduction in silicon nanofilm. Acta Physica Sinica, 2013, 62(24): 244401. doi: 10.7498/aps.62.244401
    [6] Ni Hai-Qiao, He Ji-Fang, Wang Guo-Wei, Niu Zhi-Chuan, Wang Xiu-Ping, Yang Xiao-Hong, Han Qin, Ju Yan-Ling, Du Yun, Zhu Bin, Wang Jie. Preparation and photoluminescence study of patterned substrate quantum wires. Acta Physica Sinica, 2011, 60(2): 020703. doi: 10.7498/aps.60.020703
    [7] Yang Mou, Zhou Guang-Hui, Xiao Xian-Bo. Nanoelectromechanics in a quantum wire irradiated by a THz electromagnetic field. Acta Physica Sinica, 2003, 52(8): 2037-2040. doi: 10.7498/aps.52.2037
    [8] Xu Zhen-Hai, Yuan Lin, Shan De-Bin, Guo Bin. Atomistic simulation of yield mechanism of single crystal copper nanowires. Acta Physica Sinica, 2009, 58(7): 4835-4839. doi: 10.7498/aps.58.4835
    [9] XIAO JUN-JUN, SUN CHAO, XUE DE-SHENG, LI FA-SHEN. STUDY ON MAGNETIC PROPERTIES OF Fe-NANOWIRES BY MICROMAGNETIC SIMULATION. Acta Physica Sinica, 2001, 50(8): 1605-1609. doi: 10.7498/aps.50.1605
    [10] Chen Guang-De, Yan Guo-Jun, Ye Hong-Gang, Lü Hui-Min. The growth mechanism of monocrystal aluminum nitride nanowires at low temperature. Acta Physica Sinica, 2007, 56(5): 2808-2812. doi: 10.7498/aps.56.2808
  • Citation:
Metrics
  • Abstract views:  3469
  • PDF Downloads:  571
  • Cited By: 0
Publishing process
  • Received Date:  23 April 2012
  • Accepted Date:  15 June 2012
  • Published Online:  20 November 2012

A Monte Carlo simulation study on growth mechanism of horizontal nanowires on crystal surface

  • 1. Department of Physics and Key Laboratory for Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos.11004141, 11004142, 11174212), and the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No.11-0351).

Abstract: With the kinetic Monte Carlo simulation of smooth (001) surface of symmetry-broken simple cubic crystal in fluid with low supersatuaration rate, the mechanism of nanowire growth based on crystal nuclei on the surface is discovered and the morphology of nanowire is obtained. The dependences of nanowire morphology on thermal roughness in the longitudinal and latitudinal direction and growth time on the anisotropic surface of the crystal are further discussed. The relations of nanowire growth rate with thermal roughness, supersaturation rate, surface size and diffusion rate on the surface are then systematically studied.

Reference (15)

Catalog

    /

    返回文章
    返回