Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of surface tension anisotropy on the growth patterns of cellulars in directional solidification

Zhang Yun-Peng Lin Xin Wei Lei Wang Meng Peng Dong-Jian Huang Wei-Dong

Effect of surface tension anisotropy on the growth patterns of cellulars in directional solidification

Zhang Yun-Peng, Lin Xin, Wei Lei, Wang Meng, Peng Dong-Jian, Huang Wei-Dong
PDF
Get Citation
  • The growth patterns of cellulars in directional solidification are investigated numerically using the cellular automata (CA) model in two dimensions. A criterion which determine whether the cellulars reach stable state is derived from the analysis of simulated results. The simulated results also show that it is easy for tip splitting to appear for cellulars when the surface tention anisotropy is very small. So it is hard to obtain stable cellular arrays. However, if the amplitude of surface tention anisotropy is strong enough, it is easy to obtain stable cellular arrays. And the intensity of surface energy anisotropy can considerably influence the stable cellular patterns. The stronger the surface energy anisotropy, the smaller the stable cellular spacing and the cellular tip radius are, and the smaller the ratio between tip radius and cellular spacing, the smaller the tip concentration and the tip undercooling are.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 50971102 and 50901061), the National Basic Research Program of China (Grant No. 2011CB610402), the Programme of Introducing Talents of Discipline to Universities (Grant No. 08040), and the Fund of the State Key Laboratory of Solidification Processing in NWPU (Grant No. 02-TZ-2008).
    [1]

    Akamatsu S, Faivre G 1998 Phys. Rev. E 58 3302

    [2]

    Zhao D W, Li J F 2009 Acta Phys. Sin. 58 7094 (in Chinese) [赵达文, 李金富 2009 物理学报 58 7094]

    [3]

    Li M E, Yang G C 2007 Acta Metall. Sin. 20 258

    [4]

    Kessler D A, Levine H 1986 Phys. Rev. B 33 7868

    [5]

    Amar M B, Pomeau Y 1986 Euro. Phys. Lett. 2 307

    [6]

    Langer J S 1986 Phys. Rev. A 33 435

    [7]

    Brener E A 1991 Adv. Phys. 40 53

    [8]

    Jamgotchian H, Trivedi R, Billia B 1993 Phys. Rev. E 47 4313

    [9]

    Ben-Jacob E, Deutscher G, Garik P, Goldenfeld N D, Lareah Y 1986 Phys. Rev.Lett. 57 1903

    [10]

    Steinbach I 2008 Acta Mater. 56 4965

    [11]

    Provatas N, Wang Q, Haataja M, Grant M 2003 Phys. Rev. Lett. 91 155502

    [12]

    Wang Z J 2009 Ph. D. Dissertation (Xi'an: Northwestern Polytechnical University) (in Chinese) [王志军 2009 博士学位论文 (西安: 西北工业大学)]

    [13]

    Trivedi R, Seetharaman V, Eshelman M A 1991 Metall. Trans. A 22A 585

    [14]

    Coriell S R, Sekerka R F 1976 J. Cryst. Growth 34 157

    [15]

    Zhu M F, Stefanescu D M 2007 Acta Mater. 55 1741

    [16]

    Beltran-Sanchez L, Stefanescu D M 2004 Metall. Mater. Trans. A 35 2471

    [17]

    Wei L, Lin X, Wang M, Huang W D 2011 Appl. Phys. A 103 123

    [18]

    Wei L, Lin X, Wang M, Huang W D 2012 Physica B 407 2471

    [19]

    Lipton J, Glicksman M E, Kurz W 1987 Metall. Trans. A 18A 341

    [20]

    Tiller W A, Jackson K A, Rutter J W, Chalmers B 1953 Acta Metall. 1 428

    [21]

    Kurz W, Fisher D.J 1981 Acta Metall. 29 11

    [22]

    Huang W D, Geng X G, Zhou Y H 1993 J. Cryst. Growth 134 105

    [23]

    Laxmanan V 1985 Acta. Metall. 33 1023

    [24]

    Lu S Z, Hunt J D 1992 J. Cryst. Growth 123 17

    [25]

    Mullins W W, Sekerka R F 1964 J. Appl. Phys. 35 444

  • [1]

    Akamatsu S, Faivre G 1998 Phys. Rev. E 58 3302

    [2]

    Zhao D W, Li J F 2009 Acta Phys. Sin. 58 7094 (in Chinese) [赵达文, 李金富 2009 物理学报 58 7094]

    [3]

    Li M E, Yang G C 2007 Acta Metall. Sin. 20 258

    [4]

    Kessler D A, Levine H 1986 Phys. Rev. B 33 7868

    [5]

    Amar M B, Pomeau Y 1986 Euro. Phys. Lett. 2 307

    [6]

    Langer J S 1986 Phys. Rev. A 33 435

    [7]

    Brener E A 1991 Adv. Phys. 40 53

    [8]

    Jamgotchian H, Trivedi R, Billia B 1993 Phys. Rev. E 47 4313

    [9]

    Ben-Jacob E, Deutscher G, Garik P, Goldenfeld N D, Lareah Y 1986 Phys. Rev.Lett. 57 1903

    [10]

    Steinbach I 2008 Acta Mater. 56 4965

    [11]

    Provatas N, Wang Q, Haataja M, Grant M 2003 Phys. Rev. Lett. 91 155502

    [12]

    Wang Z J 2009 Ph. D. Dissertation (Xi'an: Northwestern Polytechnical University) (in Chinese) [王志军 2009 博士学位论文 (西安: 西北工业大学)]

    [13]

    Trivedi R, Seetharaman V, Eshelman M A 1991 Metall. Trans. A 22A 585

    [14]

    Coriell S R, Sekerka R F 1976 J. Cryst. Growth 34 157

    [15]

    Zhu M F, Stefanescu D M 2007 Acta Mater. 55 1741

    [16]

    Beltran-Sanchez L, Stefanescu D M 2004 Metall. Mater. Trans. A 35 2471

    [17]

    Wei L, Lin X, Wang M, Huang W D 2011 Appl. Phys. A 103 123

    [18]

    Wei L, Lin X, Wang M, Huang W D 2012 Physica B 407 2471

    [19]

    Lipton J, Glicksman M E, Kurz W 1987 Metall. Trans. A 18A 341

    [20]

    Tiller W A, Jackson K A, Rutter J W, Chalmers B 1953 Acta Metall. 1 428

    [21]

    Kurz W, Fisher D.J 1981 Acta Metall. 29 11

    [22]

    Huang W D, Geng X G, Zhou Y H 1993 J. Cryst. Growth 134 105

    [23]

    Laxmanan V 1985 Acta. Metall. 33 1023

    [24]

    Lu S Z, Hunt J D 1992 J. Cryst. Growth 123 17

    [25]

    Mullins W W, Sekerka R F 1964 J. Appl. Phys. 35 444

  • [1] Wei Lei, Lin Xin, Wang Meng, Huang Wei-Dong. Cellular automaton model with MeshTV interface reconstruction technique for alloy dendrite growth. Acta Physica Sinica, 2012, 61(9): 098104. doi: 10.7498/aps.61.098104
    [2] Yong Gui, Huang Hai-Jun, Xu Yan. A cellular automata model of pedestrian evacuation in rooms with squared rhombus cells. Acta Physica Sinica, 2013, 62(1): 010506. doi: 10.7498/aps.62.010506
    [3] Liang Jing-Yun, Zhang Li-Li, Luan Xi-Dao, Guo Jin-Lin, Lao Song-Yang, Xie Yu-Xiang. Multi-section cellular automata model of traffic flow. Acta Physica Sinica, 2017, 66(19): 194501. doi: 10.7498/aps.66.194501
    [4] Shan Bo-Wei, Lin Xin, Wei Lei, Huang Wei-Dong. A cellular automaton model for dendrite solidification of pure substance. Acta Physica Sinica, 2009, 58(2): 1132-1138. doi: 10.7498/aps.58.1132
    [5] Chen Rui, Xu Qing-Yan, Liu Bai-Cheng. Simulation of dendritic competitive growth during directional solidification using modified cellular automaton method. Acta Physica Sinica, 2014, 63(18): 188102. doi: 10.7498/aps.63.188102
    [6] Mou Yong-Biao, Zhong Cheng-Wen. Cellular automaton model of traffic flow based on safety driving. Acta Physica Sinica, 2005, 54(12): 5597-5601. doi: 10.7498/aps.54.5597
    [7] Hua Wei, Lin Bo-Liang. One-dimensional traffic cellular automaton model with considering the vehicle moving status. Acta Physica Sinica, 2005, 54(6): 2595-2599. doi: 10.7498/aps.54.2595
    [8] Wu Ke-Fei, Kong Ling-Jiang, Liu Mu-Ren. The study of a cellular automaton NS and WWH mixed model for traffic flow on a two-lane roadway. Acta Physica Sinica, 2006, 55(12): 6275-6280. doi: 10.7498/aps.55.6275
    [9] Guo Si-Ling, Wei Yan-Fang, Xue Yu. On the characteristics of phase transition in CA traffic models. Acta Physica Sinica, 2006, 55(7): 3336-3342. doi: 10.7498/aps.55.3336
    [10] Yue Hao, Shao Chun-Fu, Chen Xiao-Ming, Hao He-Rui. Simulation of bi-directional pedestrian flow based on cellular automata model. Acta Physica Sinica, 2008, 57(11): 6901-6908. doi: 10.7498/aps.57.6901
  • Citation:
Metrics
  • Abstract views:  2903
  • PDF Downloads:  411
  • Cited By: 0
Publishing process
  • Received Date:  08 May 2012
  • Accepted Date:  11 June 2012
  • Published Online:  20 November 2012

Effect of surface tension anisotropy on the growth patterns of cellulars in directional solidification

  • 1. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 50971102 and 50901061), the National Basic Research Program of China (Grant No. 2011CB610402), the Programme of Introducing Talents of Discipline to Universities (Grant No. 08040), and the Fund of the State Key Laboratory of Solidification Processing in NWPU (Grant No. 02-TZ-2008).

Abstract: The growth patterns of cellulars in directional solidification are investigated numerically using the cellular automata (CA) model in two dimensions. A criterion which determine whether the cellulars reach stable state is derived from the analysis of simulated results. The simulated results also show that it is easy for tip splitting to appear for cellulars when the surface tention anisotropy is very small. So it is hard to obtain stable cellular arrays. However, if the amplitude of surface tention anisotropy is strong enough, it is easy to obtain stable cellular arrays. And the intensity of surface energy anisotropy can considerably influence the stable cellular patterns. The stronger the surface energy anisotropy, the smaller the stable cellular spacing and the cellular tip radius are, and the smaller the ratio between tip radius and cellular spacing, the smaller the tip concentration and the tip undercooling are.

Reference (25)

Catalog

    /

    返回文章
    返回