Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ag antidot array modified TiO2 film and its photocatalysis performance

Qi Hong-Fei Liu Da-Bo Cheng Bo Hao Wei-Chang Wang Tian-Min

Ag antidot array modified TiO2 film and its photocatalysis performance

Qi Hong-Fei, Liu Da-Bo, Cheng Bo, Hao Wei-Chang, Wang Tian-Min
PDF
Get Citation
  • Ag antidot arrays modified TiO2 films are obtained by PS colloidal crystal template technique and magnetron sputtering method, and the microstructure of Ag antidot array is modulated through controlling the sputtering power. And then, the structural and the photocatalysis performances of all samples are characterized by using scanning electron microscopy, X-ray diffraction, UV-Vis spectrophotometer, and four-point probe. The experimental results show that the microstructure of Ag antidot array significantly influences the photocatalysis performance of the sample. With the diameter of the antidot array decreasing, the photocatalysis performance of the sample is enhanced due to the increase of conducting ability. The photocatalysis performance is highest, when the diameter of the antidot array is 710 nm. Subsequently, with the diameter of the antidot array further decreasing, the photocatalysis performance decreases to a certain extent, which results from the increases of the carrier loss and the light shading area. The photocatalysis performance of Ag antidot array modified TiO2 film is superior to that of TiO2 film. This is attributed to the fact that the Ag antidot array could effectively promote the separation of surface photoinduced charge carrier of TiO2 nanoparticles, which is responsible for the remarkable increase in photocatalytic activity.
    • Funds: Project supported by the Innovation Foundation of Beijing Institute of Aeronautical Materials (Grant No. KF53090315).
    [1]

    Zhang X J, Liu Q J, Deng S G, Chen J, Gao P 2011 Acta Phys. Sin. 60 087103 (in Chinese) [张学军, 柳清菊, 邓曙光, 陈娟, 高攀 2011 物理学报 60 087103]

    [2]

    Arconada N, Castro Y, Durán A 2010 Appl. Catal. A 385 101

    [3]

    Ma H M, Hong L, Yin Y, Xu J, Ye H 2011 Acta Phys. Sin. 60 098105 (in Chinese) [马海敏, 洪亮, 尹伊, 许坚, 叶辉 2011 物理学报 60 098105]

    [4]

    Gutmann S, Wolak M A, Conrad M, Beerbom M M, Schlaf R 2011 J. Appl. Phys. 109 113719

    [5]

    Prasad A K, Jha R, Ramaseshan R, Dash S, Manna I, Tyagi A K 2011 Surf. Eng. 27 350

    [6]

    Li T J, Li G P, Ma J P, Gao X X 2011 Acta Phys. Sin. 60 116102 (in Chinese) [李天晶, 李公平, 马俊平, 高行新 2011 物理学报 60 116102]

    [7]

    Wang T M, Wang Y 2010 Mater. China 29 60 (in Chinese) [王天民, 王莹 2010 中国材料进展 29 60]

    [8]

    Huang L H, Sun C, Liu Y L 2007 Appl. Surf. Sci. 253 7029

    [9]

    Zhang Y G, Wang Y X 2011 J. Appl. Phys. 110 033519

    [10]

    Kim K D, Han D N, Lee J B, Kim H T 2006 Scripta Mater. 54 143

    [11]

    Stir M, Nicula R, Burkel E 2006 J. Eur. Ceram. Soc. 26 1547

    [12]

    Wang C M, Zhang Y, Shutthanandan V, Thevuthasan S, Duscher G 2004 J. Appl. Phys. 95 8185

    [13]

    Zou J J, Chen C, Liu C J, Zhang Y P, Han Y, Cui L 2005 Mater. Lett. 59 3437

    [14]

    Nakata K, Udagawa K, Tryk D A, Ochiai T, Nishimoto S, Sakai H, Murakami T, Abe M, Fujishima A 2009 Mater. Lett. 63 1628

    [15]

    Zheng S K, Wang T M, Hao W C, Shen R 2002 Vacuum 65 155

    [16]

    Zhang X W, Zhou M H, Lei L C 2005 Mater. Chem. Phys. 91 73

    [17]

    Zhao, Z Y, Liu Q J, Zhu Z Q, Zhang J 2008 Acta Phys. Sin. 57 3760 (in Chinese) [赵宗彦, 柳清菊, 朱忠其, 张瑾 2008 物理学报 57 3760]

    [18]

    Qi H F, Hao W C, Xu H Z, Zhang J Y, Wang T M 2009 Colloid. Polym. Sci. 287 243

    [19]

    Subramanian V, Wolf E E, Kamat P V 2003 J. Phys. Chem. B 107 7479

  • [1]

    Zhang X J, Liu Q J, Deng S G, Chen J, Gao P 2011 Acta Phys. Sin. 60 087103 (in Chinese) [张学军, 柳清菊, 邓曙光, 陈娟, 高攀 2011 物理学报 60 087103]

    [2]

    Arconada N, Castro Y, Durán A 2010 Appl. Catal. A 385 101

    [3]

    Ma H M, Hong L, Yin Y, Xu J, Ye H 2011 Acta Phys. Sin. 60 098105 (in Chinese) [马海敏, 洪亮, 尹伊, 许坚, 叶辉 2011 物理学报 60 098105]

    [4]

    Gutmann S, Wolak M A, Conrad M, Beerbom M M, Schlaf R 2011 J. Appl. Phys. 109 113719

    [5]

    Prasad A K, Jha R, Ramaseshan R, Dash S, Manna I, Tyagi A K 2011 Surf. Eng. 27 350

    [6]

    Li T J, Li G P, Ma J P, Gao X X 2011 Acta Phys. Sin. 60 116102 (in Chinese) [李天晶, 李公平, 马俊平, 高行新 2011 物理学报 60 116102]

    [7]

    Wang T M, Wang Y 2010 Mater. China 29 60 (in Chinese) [王天民, 王莹 2010 中国材料进展 29 60]

    [8]

    Huang L H, Sun C, Liu Y L 2007 Appl. Surf. Sci. 253 7029

    [9]

    Zhang Y G, Wang Y X 2011 J. Appl. Phys. 110 033519

    [10]

    Kim K D, Han D N, Lee J B, Kim H T 2006 Scripta Mater. 54 143

    [11]

    Stir M, Nicula R, Burkel E 2006 J. Eur. Ceram. Soc. 26 1547

    [12]

    Wang C M, Zhang Y, Shutthanandan V, Thevuthasan S, Duscher G 2004 J. Appl. Phys. 95 8185

    [13]

    Zou J J, Chen C, Liu C J, Zhang Y P, Han Y, Cui L 2005 Mater. Lett. 59 3437

    [14]

    Nakata K, Udagawa K, Tryk D A, Ochiai T, Nishimoto S, Sakai H, Murakami T, Abe M, Fujishima A 2009 Mater. Lett. 63 1628

    [15]

    Zheng S K, Wang T M, Hao W C, Shen R 2002 Vacuum 65 155

    [16]

    Zhang X W, Zhou M H, Lei L C 2005 Mater. Chem. Phys. 91 73

    [17]

    Zhao, Z Y, Liu Q J, Zhu Z Q, Zhang J 2008 Acta Phys. Sin. 57 3760 (in Chinese) [赵宗彦, 柳清菊, 朱忠其, 张瑾 2008 物理学报 57 3760]

    [18]

    Qi H F, Hao W C, Xu H Z, Zhang J Y, Wang T M 2009 Colloid. Polym. Sci. 287 243

    [19]

    Subramanian V, Wolf E E, Kamat P V 2003 J. Phys. Chem. B 107 7479

  • [1] Zhao Zong-Yan, Liu Qing-Ju, Zhu Zhong-Qi, Zhang Jin. Effects of S doping on electronic structures and photocatalytic properties of anatase TiO2. Acta Physica Sinica, 2008, 57(6): 3760-3768. doi: 10.7498/aps.57.3760
    [2] Mechanical and optical properties of titanium dioxide films prepared by pulsed bias arc ion plating. Acta Physica Sinica, 2007, 56(12): 7300-7308. doi: 10.7498/aps.56.7300
    [3] Zhang Xue-Jun, Liu Qing-Ju, Deng Shu-Guang, Chen Juan, Gao Pan. Effects of Mn and N codoping on microstructure and performance of anatase TiO2. Acta Physica Sinica, 2011, 60(8): 087103. doi: 10.7498/aps.60.087103
    [4] Preparation and thermoelectric properties of p-type Ag0.5(Pb8-xSnx)In0.5Te10 compounds. Acta Physica Sinica, 2007, 56(12): 7309-7314. doi: 10.7498/aps.56.7309
    [5] Fang Wen-Yu, Zhang Peng-Cheng, Zhao Jun, Kang Wen-Bin. Electronic structure and photocatalytic properties of H, F modified two-dimensional GeTe. Acta Physica Sinica, 2020, 69(5): 056301. doi: 10.7498/aps.69.20191391
    [6] ZHAO KUN, ZHU FENG, WANG LI-FANG, MENG TIE-JUN, ZHANG BAO-CHENG, ZHAO KUI. INVESTIGATIONS OF TiO2 FILMS PREPARED BY REACTIVE MAGNETRON SPUTTERING. Acta Physica Sinica, 2001, 50(7): 1390-1395. doi: 10.7498/aps.50.1390
    [7] Wang Xiao-Dong, Shen Jun, Wang Sheng-Zhao, Zhang Zhi-Hua. Optical constants of sol-gel derived TiO2 films characterized by spectroscopic ellipsometry. Acta Physica Sinica, 2009, 58(11): 8027-8032. doi: 10.7498/aps.58.8027
    [8] Ma Zhong-Quan, Xu Fei, Zhao Lei, Li Feng, He Bo, Yang Chang-Hu. Raman spectral analysis of TiO2 thin films doped with rare-earth yttrium and lanthanum. Acta Physica Sinica, 2010, 59(9): 6549-6555. doi: 10.7498/aps.59.6549
    [9] Effects of emitting and hole transporting layers on the performance of white organic light-emitting divice. Acta Physica Sinica, 2007, 56(12): 7213-7218. doi: 10.7498/aps.56.7213
    [10] Mao Xin-Guang, Wang Jun, Shen Jie. Upconversion luminescence properties in Er3+/Yb3+ codoped TiO2 films prepared by magnetron sputtering. Acta Physica Sinica, 2014, 63(8): 087803. doi: 10.7498/aps.63.087803
  • Citation:
Metrics
  • Abstract views:  3038
  • PDF Downloads:  427
  • Cited By: 0
Publishing process
  • Received Date:  05 March 2012
  • Accepted Date:  18 June 2012
  • Published Online:  20 November 2012

Ag antidot array modified TiO2 film and its photocatalysis performance

  • 1. Department of Structural Steel, Functional Material and Metal Heat Treatment Technology, Beijing Institute of Aeronautical Materials, Beijing 100095, China;
  • 2. Center of Condensed Matter and Material Physics, Beihang University, Beijing 100191, China
Fund Project:  Project supported by the Innovation Foundation of Beijing Institute of Aeronautical Materials (Grant No. KF53090315).

Abstract: Ag antidot arrays modified TiO2 films are obtained by PS colloidal crystal template technique and magnetron sputtering method, and the microstructure of Ag antidot array is modulated through controlling the sputtering power. And then, the structural and the photocatalysis performances of all samples are characterized by using scanning electron microscopy, X-ray diffraction, UV-Vis spectrophotometer, and four-point probe. The experimental results show that the microstructure of Ag antidot array significantly influences the photocatalysis performance of the sample. With the diameter of the antidot array decreasing, the photocatalysis performance of the sample is enhanced due to the increase of conducting ability. The photocatalysis performance is highest, when the diameter of the antidot array is 710 nm. Subsequently, with the diameter of the antidot array further decreasing, the photocatalysis performance decreases to a certain extent, which results from the increases of the carrier loss and the light shading area. The photocatalysis performance of Ag antidot array modified TiO2 film is superior to that of TiO2 film. This is attributed to the fact that the Ag antidot array could effectively promote the separation of surface photoinduced charge carrier of TiO2 nanoparticles, which is responsible for the remarkable increase in photocatalytic activity.

Reference (19)

Catalog

    /

    返回文章
    返回