Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Atomic process in high-temperature radiation field

Meng Guang-Wei Li Jing-Hong Pei Wen-Bing Zhang Wei-Yan

Atomic process in high-temperature radiation field

Meng Guang-Wei, Li Jing-Hong, Pei Wen-Bing, Zhang Wei-Yan
PDF
Get Citation
  • The ratio of radiation energy density to matter energy density is an important parameter to distinguish the characteristic of atomic processes in plasma. Actoring to this parameter, atomic processes in plasma can be divided into two typical categories: collision-dominated and radiation-dominated. According to numerical simulation, atomic processes of these two categories have different characteristics. The LTE state can be quickly reached in the collision-dominated plasma. However in the radiation-dominated plasma, the temperature of bound electrons, the ionization degree, and the temperature of free electrons have different relaxation time scales. There is some kind of quasi-LTE state.
    [1]

    National Task Force on High Energy Density Physics 2004 Frontiers for Discovery in High Energy Density Physics p1-2

    [2]

    Pomraning G C 1973 The Equations of Radiation Hydrodynamics (Pergamon Press) p46-47

    [3]

    ApruZese J P, Davis J, Whitney K G, Thornhill J W, Kepple P C, Clark R W, Deeney C, Coverdale C A, Sanford T W L 2002 Phys. Plasmas 9 2411

    [4]

    Marshak R E 1958 Phys. Fluids 1 24

    [5]

    Pakula R, Sigel R 1985 Phys. Fluids 28 232

    [6]

    Hammer J H, Rosen M D 2003 Phys. Plasmas 10 1829

    [7]

    Meng G W, Li J H, Pei W B, Li S G, Zhang W Y 2011 Acta Phys. Sin. 60 025210(in Chinese) [孟广为, 李敬宏, 裴文兵, 李双贵, 张维岩 2011 物理学报 60 025210]

    [8]

    Zimmerman G B, Kruer WB 1975 Comments Plasma Phys. Controlled Fusion 2 51

    [9]

    Marinak M M, Kerbel G D, Gentile N A, Johns O, Munro D, Pollaine S, Dittrich T R, Hann S W 2001 Phys. Plasmas 8 2275

    [10]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Hann S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339

    [11]

    Drake R P 2009 Nature Phys. 5 786

    [12]

    Foord M E, Heeter R F, van Hoof P A M, Thoe R S, Bailey J E, Cuneo M E, Chung H K, Liedahl D A, Fournier K B, Chandler G A, Jonauskas V, Kisielius R, Mix L P, Ramsbottom C, Springer P T, Keenan F P, Rose S J, and Goldstein W H 2004 Phys Rev. Lett. 93 055002

    [13]

    Foord M E, Heeter R F, Chung H K, van Hoof P A M, Bailey J E, Cuneo M E, Liedahl D A, Fournier K B, Jonauskas V, Kisielius R, Ramsbottom C, Springer P T, Keenan F P, Rose S J, Goldstein W H 2006 J. Quant. Spect. Rad. Trans. 99 712

    [14]

    Wang F L, Fujioka S, Nishimura H, Kato D, Li Y T, Zhao G, Zhang J, Takabe H 2008 Phys. Plasmas 15 073108

    [15]

    Fujioka S, Takabe H, Yamamoto N, Salzmann D, Wang F, Nishimura H, Li Y, Dong Q, Wang S, Zhang Y, Rhee Y, Lee Y, Han J, Tanabe M, Fujiwara T, Nakabayashi Y, Zhao G, Zhang J, Mima K 2009 Nature Phys. 5 821

    [16]

    Dong Q L,Wang S J, Li Y T, Zhang Y, Zhao J,Wei H G, Shi J R , Zhao G, Zhang J Y, Gu Y Q, Ding Y K, Wen T S, Zhang W H, Hu X, Liu S Y, Zhang L, Tang Y J, Zhang B H, Zheng Z J, Nishimura H, Fujioka S, Wang F L, Takabe H, Zhang J 2010 Phys. Plasmas 17 012701

    [17]

    Yang P Q,Wang F L, Zhao G 2011 Physics 40 23 (in Chinese) [杨培强, 王菲鹿, 赵刚 2011 物理 40 23]

    [18]

    Rose S J, van Hoof P A M, Jonauskas V, Keenan F P, Kisielius R, Ramsbottom C, Foord M E, Heeter R F, Springer P T 2004 J. Phys. B 37 L337

    [19]

    Rogers F J, Iglesias C A 1994 Sience 263 50

    [20]

    Perry T S, Davidson S J, Serduke F J D, Bach D R, Smith C C, Foster JM, Doyas R J,Ward R A, Iglesias C A, Rogers F J, Abdallah J, Stewart R E, Kilkenny J D, Lee R W 1991 Phys. Rev. Lett. 67 3784

    [21]

    Perry T S, Springer P T, Fields D F 1996 Phys. Rev. E 54 5617

    [22]

    Xu Y, Zhang J Y, Yang J M, Pei W B, Ding Y K, Lai D X, Meng G W, Luo Z 2007 Phys. Plasmas 14 052701

    [23]

    Griem H R 1963 Phys. Rev. 131 1170

    [24]

    Wilson R 1962 J. Quant. Spect. Rad. Trans. 2 477

    [25]

    McWhirter R W P 1965 Plasma Diagnostic Techniques (Academic New York) p201

    [26]

    Fujimoto T, McWhirter R W P 1990 Phys. Rev. A 42 6588

    [27]

    Zhang J, Chang T Q 2004 Fundaments of the Targets Physics for Laser Fusion (Industry of Denfense Press) [张钧, 常铁强 2004 激光核聚变靶物理基础 (国防工业出版社) 第127--143页]

    [28]

    Woan G 2006 The Cambridge Handbook of Physics Formula( Shanghai Science and Education Press) [格雷厄姆$cdot$沃安著, 喀兴林译 2006 剑桥物理公式手册 (上海科技教育出版社) 第156页]

  • [1]

    National Task Force on High Energy Density Physics 2004 Frontiers for Discovery in High Energy Density Physics p1-2

    [2]

    Pomraning G C 1973 The Equations of Radiation Hydrodynamics (Pergamon Press) p46-47

    [3]

    ApruZese J P, Davis J, Whitney K G, Thornhill J W, Kepple P C, Clark R W, Deeney C, Coverdale C A, Sanford T W L 2002 Phys. Plasmas 9 2411

    [4]

    Marshak R E 1958 Phys. Fluids 1 24

    [5]

    Pakula R, Sigel R 1985 Phys. Fluids 28 232

    [6]

    Hammer J H, Rosen M D 2003 Phys. Plasmas 10 1829

    [7]

    Meng G W, Li J H, Pei W B, Li S G, Zhang W Y 2011 Acta Phys. Sin. 60 025210(in Chinese) [孟广为, 李敬宏, 裴文兵, 李双贵, 张维岩 2011 物理学报 60 025210]

    [8]

    Zimmerman G B, Kruer WB 1975 Comments Plasma Phys. Controlled Fusion 2 51

    [9]

    Marinak M M, Kerbel G D, Gentile N A, Johns O, Munro D, Pollaine S, Dittrich T R, Hann S W 2001 Phys. Plasmas 8 2275

    [10]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Hann S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339

    [11]

    Drake R P 2009 Nature Phys. 5 786

    [12]

    Foord M E, Heeter R F, van Hoof P A M, Thoe R S, Bailey J E, Cuneo M E, Chung H K, Liedahl D A, Fournier K B, Chandler G A, Jonauskas V, Kisielius R, Mix L P, Ramsbottom C, Springer P T, Keenan F P, Rose S J, and Goldstein W H 2004 Phys Rev. Lett. 93 055002

    [13]

    Foord M E, Heeter R F, Chung H K, van Hoof P A M, Bailey J E, Cuneo M E, Liedahl D A, Fournier K B, Jonauskas V, Kisielius R, Ramsbottom C, Springer P T, Keenan F P, Rose S J, Goldstein W H 2006 J. Quant. Spect. Rad. Trans. 99 712

    [14]

    Wang F L, Fujioka S, Nishimura H, Kato D, Li Y T, Zhao G, Zhang J, Takabe H 2008 Phys. Plasmas 15 073108

    [15]

    Fujioka S, Takabe H, Yamamoto N, Salzmann D, Wang F, Nishimura H, Li Y, Dong Q, Wang S, Zhang Y, Rhee Y, Lee Y, Han J, Tanabe M, Fujiwara T, Nakabayashi Y, Zhao G, Zhang J, Mima K 2009 Nature Phys. 5 821

    [16]

    Dong Q L,Wang S J, Li Y T, Zhang Y, Zhao J,Wei H G, Shi J R , Zhao G, Zhang J Y, Gu Y Q, Ding Y K, Wen T S, Zhang W H, Hu X, Liu S Y, Zhang L, Tang Y J, Zhang B H, Zheng Z J, Nishimura H, Fujioka S, Wang F L, Takabe H, Zhang J 2010 Phys. Plasmas 17 012701

    [17]

    Yang P Q,Wang F L, Zhao G 2011 Physics 40 23 (in Chinese) [杨培强, 王菲鹿, 赵刚 2011 物理 40 23]

    [18]

    Rose S J, van Hoof P A M, Jonauskas V, Keenan F P, Kisielius R, Ramsbottom C, Foord M E, Heeter R F, Springer P T 2004 J. Phys. B 37 L337

    [19]

    Rogers F J, Iglesias C A 1994 Sience 263 50

    [20]

    Perry T S, Davidson S J, Serduke F J D, Bach D R, Smith C C, Foster JM, Doyas R J,Ward R A, Iglesias C A, Rogers F J, Abdallah J, Stewart R E, Kilkenny J D, Lee R W 1991 Phys. Rev. Lett. 67 3784

    [21]

    Perry T S, Springer P T, Fields D F 1996 Phys. Rev. E 54 5617

    [22]

    Xu Y, Zhang J Y, Yang J M, Pei W B, Ding Y K, Lai D X, Meng G W, Luo Z 2007 Phys. Plasmas 14 052701

    [23]

    Griem H R 1963 Phys. Rev. 131 1170

    [24]

    Wilson R 1962 J. Quant. Spect. Rad. Trans. 2 477

    [25]

    McWhirter R W P 1965 Plasma Diagnostic Techniques (Academic New York) p201

    [26]

    Fujimoto T, McWhirter R W P 1990 Phys. Rev. A 42 6588

    [27]

    Zhang J, Chang T Q 2004 Fundaments of the Targets Physics for Laser Fusion (Industry of Denfense Press) [张钧, 常铁强 2004 激光核聚变靶物理基础 (国防工业出版社) 第127--143页]

    [28]

    Woan G 2006 The Cambridge Handbook of Physics Formula( Shanghai Science and Education Press) [格雷厄姆$cdot$沃安著, 喀兴林译 2006 剑桥物理公式手册 (上海科技教育出版社) 第156页]

  • [1] Han Xiao-Ying, Liu Ling-Tao, Wang Min-Sheng, Li Jia-Ming. Photonionization and radiative recombination of Br——Comparison of rate coefficients deduced form the average atom and detailed configuration models. Acta Physica Sinica, 2006, 55(5): 2322-2327. doi: 10.7498/aps.55.2322
    [2] Ma Wen, Jin Feng-Tao, Yuan Jian-Min. Effect of line shift on the calculated radiative opacity using average atom approach. Acta Physica Sinica, 2007, 56(10): 5709-5714. doi: 10.7498/aps.56.5709
    [3] Tian Ming-Feng, Meng Xu-Jun, Zhu Xi-Rui, Jiang Min-Hao, Wang Zhi-Gang. Theoretical study of cross sections of excitation and ionization for electron-ion impact in average-atomic model. Acta Physica Sinica, 2005, 54(10): 4673-4679. doi: 10.7498/aps.54.4673
    [4] ELEMENTARY PARTICLE THEORY GROUP. SOME DISCUSSIONS OF THE STRUCTURE WAVE FUNCTIONS OF MESONS IN THE APPROXIMATION OF INSTANTANEOUS INTERACTION (Ⅱ)——THE HARMONIC OSCILLATOR MODEL OF PSEUDO-SCALAR AND VECTOR MESONS. Acta Physica Sinica, 1976, 151(5): 415-422. doi: 10.7498/aps.25.415
    [5] Jia Fei, Xie Shuang-Yuan, Yang Ya-Ping. Interaction of an atom with a field with varying frequency without rotating-wave approximation. Acta Physica Sinica, 2006, 55(11): 5835-5841. doi: 10.7498/aps.55.5835
    [6] YANG GUANG-CAN. THE NONLINEAR THEORY OF INTERACTION BETWEEN LIGHT AND MATTER DESCRIBED BY q-DEFOR- MED OSCILLATOR MODEL. Acta Physica Sinica, 1994, 43(4): 521-529. doi: 10.7498/aps.43.521
    [7] LUO ZHEN-FET, XU ZHI-ZHAN, XU LEI. RAMAN INTERACTION OF A PAIR OF TWO-LEVEL ATOMS WITH A RADIATION FIELD. Acta Physica Sinica, 1992, 41(12): 1950-1954. doi: 10.7498/aps.41.1950
    [8] SONG TONG-QIANG, WANG WEN-ZHENG, XU JING-ZHI, FENG JIAN. EMISSION SPECTRA OF TWO ATOMS COUPLED BY DIPOLE-DIPOLE FORCE IN TWO-MODE CAVITY FIELDS. Acta Physica Sinica, 1994, 43(12): 1966-1972. doi: 10.7498/aps.43.1966
    [9] Huang Chun-Jia, Zhou Ming, Li Jiang-Fan, He Hui-Yong. . Acta Physica Sinica, 2002, 51(4): 805-808. doi: 10.7498/aps.51.805
    [10] LIU SAN-QIU, GUO QIN, TAO XIANG-YANG, FU CHUAN-HONG. QUANTUM DYNAMICS OF A CASCADE THREE-LEVEL ATOM INTERACTING WITH COHERENT STATE IN THE COUNTER ROTATING WAVE APPROXIMATION. Acta Physica Sinica, 1998, 47(9): 1481-1488. doi: 10.7498/aps.47.1481
  • Citation:
Metrics
  • Abstract views:  1538
  • PDF Downloads:  438
  • Cited By: 0
Publishing process
  • Received Date:  18 March 2011
  • Accepted Date:  01 May 2011
  • Published Online:  15 April 2012

Atomic process in high-temperature radiation field

  • 1. Institute of Applied Physics and Computational Mathmatics, Beijing 100094, China;
  • 2. National High-Technology Inertial Confinement Fusion Committee, Beijing 100088, China

Abstract: The ratio of radiation energy density to matter energy density is an important parameter to distinguish the characteristic of atomic processes in plasma. Actoring to this parameter, atomic processes in plasma can be divided into two typical categories: collision-dominated and radiation-dominated. According to numerical simulation, atomic processes of these two categories have different characteristics. The LTE state can be quickly reached in the collision-dominated plasma. However in the radiation-dominated plasma, the temperature of bound electrons, the ionization degree, and the temperature of free electrons have different relaxation time scales. There is some kind of quasi-LTE state.

Reference (28)

Catalog

    /

    返回文章
    返回