Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High-gain Raman scattering spectrum of trapped atomic gas

Jia Zhen-Qiang Zhang Lin

High-gain Raman scattering spectrum of trapped atomic gas

Jia Zhen-Qiang, Zhang Lin
PDF
Get Citation
  • In this paper, the Raman scattering spectra of cold atomic gas in different environments are closely calculated. Comparing the spectra from the atoms in free and trapped environments, the calculation result gives a right spectrum structure for the free atoms and reveals a distinct high-gain spectrum exhibiting a comb-like structure for the harmonic trapped atoms. The spectral peaks of the trapped spectrum are uniformly distributed and the distance between adjacent spectral peaks exactly equals the frequency of the trap. The nonlinear gain scheme and the gain conditions of the Raman scattering process are clearly given in this paper.
    • Funds: Project supported by the Natural Science Foundation of Shaanxi Province (Grant No.SJ08A12).
    [1]

    Chu Steven, Hollberg L, Bjorkholm J E, Cable A, Ashkin A 1985 Phys. Rev. Lett. 55 48

    [2]

    Pierre Meystre, Murray Sargent III Elements of Quantum Optics, 4th edition, Springer, Berlin Heidelberg New York, Chapter 9: Saturation Spectroscopy, p223 and Chapter 16: Resonance Fluorescence, p383

    [3]

    Wu F Y, Ezekiel S, Ducloy M, Mollow B R 1997 Phys. Rev. Lett. 38 1077

    [4]

    Guo J, Berman P R, Dubetsky B, Grynberg G 1992 Phys. Rev. A 46 1426 Brzozowski T M, Brzozowska M, Zachorowski J, Zawada M and Gawlik W 2005 Phys. Rev. A 71 013401

    [5]

    Grison D, Lounis B, Salomon C, Courtois J Y, Grynberg G 1991 Europhys. Lett. 15 149

    [6]

    Preston D W 1996 Am. J. Phys. 64 1432

    [7]

    Razdan K, Van Baak D A 1999 Am. J. Phys. 67 832

    [8]

    Bonifacio R, Salvo L De 1994 Nucl. Instrum. Methods Phys. Res. A 341 360 Bonifacio R 1995 Phys. Res. A 50 1716

    [9]

    Berman P R 1999 Phys. Rev. A 59 585

    [10]

    Hemmer P R, Bigelow N P, Katz D P, Shahriar M S, DeSalvo L, Bonifacio R 1996 Phys. Rev. Lett. 77 1468 Inouye S, Löw R F, Gupta S, Pfau T, Görlitz A, Gustavson T L, Pritchard D E, Ketterle W 2000 Phys. Rev. Lett. 85 4225

    [11]

    Slama S, Bux S, Krenz G, Zimmermann C, Courteille P W 2007 Phys. Rev. Lett. 98 053603 Slama S, Krenz G, Bux S, Zimmermann C, Courteille P W 2007 Phys. Rev. A 75 063620

    [12]

    Deng L, Payne M G, Hagley E W 2010 Phys. Rev. Lett. 104 050402

    [13]

    Zhou X J 2009 Phys. Rev. A 80 023818

    [14]

    S. Inouye, Chikkatur A P, Stamper-Kurn DM, Stenger J, Pritchard D E, Ketterle W 1999 Science 285 571

    [15]

    Yang G J, Zhang Lin, Shu W 2003 Phys. Rev. A 68 063802

    [16]

    Zhang L, Kong H Y, Yang G J 2006 Acta Phys. Sin. 55 5122 (in Chinese) [张林, 孔红艳, 杨国健 2006 物理学报 55 5122]

    [17]

    Abate J A 1974 Opt. Commun. 10 269

    [18]

    Kruse D, Cube C von, Zimmermann C, Courteille Ph W 2003 Phys. Rev. Lett. 91 183601

    [19]

    Horak P, Gheri K M, Ritsch H 1995 Phys. Rev. A 52 554

    [20]

    Guo J, Berman P R, Dubetsky B, Grynberg G 1992 Phys. Rev. A 46 1426

    [21]

    Madey J M 1979 Nuovo Cimento 50 64 Bonifacio R, Meystre P, Moore G T, Scully M O 1980 Phys. Rev. A 21 2009

    [22]

    Deng L, Hagley E W, Cao Q, Wang X R, Luo X Y, Wang R Q, Payne M G, Yang F, Zhou X J, Chen X, Zhan M S 2010 Phys. Rev. Lett. 105 220404

    [23]

    Vogel W, de Matos Filho R L 1995 Phys. Rev. A 52 4214

  • [1]

    Chu Steven, Hollberg L, Bjorkholm J E, Cable A, Ashkin A 1985 Phys. Rev. Lett. 55 48

    [2]

    Pierre Meystre, Murray Sargent III Elements of Quantum Optics, 4th edition, Springer, Berlin Heidelberg New York, Chapter 9: Saturation Spectroscopy, p223 and Chapter 16: Resonance Fluorescence, p383

    [3]

    Wu F Y, Ezekiel S, Ducloy M, Mollow B R 1997 Phys. Rev. Lett. 38 1077

    [4]

    Guo J, Berman P R, Dubetsky B, Grynberg G 1992 Phys. Rev. A 46 1426 Brzozowski T M, Brzozowska M, Zachorowski J, Zawada M and Gawlik W 2005 Phys. Rev. A 71 013401

    [5]

    Grison D, Lounis B, Salomon C, Courtois J Y, Grynberg G 1991 Europhys. Lett. 15 149

    [6]

    Preston D W 1996 Am. J. Phys. 64 1432

    [7]

    Razdan K, Van Baak D A 1999 Am. J. Phys. 67 832

    [8]

    Bonifacio R, Salvo L De 1994 Nucl. Instrum. Methods Phys. Res. A 341 360 Bonifacio R 1995 Phys. Res. A 50 1716

    [9]

    Berman P R 1999 Phys. Rev. A 59 585

    [10]

    Hemmer P R, Bigelow N P, Katz D P, Shahriar M S, DeSalvo L, Bonifacio R 1996 Phys. Rev. Lett. 77 1468 Inouye S, Löw R F, Gupta S, Pfau T, Görlitz A, Gustavson T L, Pritchard D E, Ketterle W 2000 Phys. Rev. Lett. 85 4225

    [11]

    Slama S, Bux S, Krenz G, Zimmermann C, Courteille P W 2007 Phys. Rev. Lett. 98 053603 Slama S, Krenz G, Bux S, Zimmermann C, Courteille P W 2007 Phys. Rev. A 75 063620

    [12]

    Deng L, Payne M G, Hagley E W 2010 Phys. Rev. Lett. 104 050402

    [13]

    Zhou X J 2009 Phys. Rev. A 80 023818

    [14]

    S. Inouye, Chikkatur A P, Stamper-Kurn DM, Stenger J, Pritchard D E, Ketterle W 1999 Science 285 571

    [15]

    Yang G J, Zhang Lin, Shu W 2003 Phys. Rev. A 68 063802

    [16]

    Zhang L, Kong H Y, Yang G J 2006 Acta Phys. Sin. 55 5122 (in Chinese) [张林, 孔红艳, 杨国健 2006 物理学报 55 5122]

    [17]

    Abate J A 1974 Opt. Commun. 10 269

    [18]

    Kruse D, Cube C von, Zimmermann C, Courteille Ph W 2003 Phys. Rev. Lett. 91 183601

    [19]

    Horak P, Gheri K M, Ritsch H 1995 Phys. Rev. A 52 554

    [20]

    Guo J, Berman P R, Dubetsky B, Grynberg G 1992 Phys. Rev. A 46 1426

    [21]

    Madey J M 1979 Nuovo Cimento 50 64 Bonifacio R, Meystre P, Moore G T, Scully M O 1980 Phys. Rev. A 21 2009

    [22]

    Deng L, Hagley E W, Cao Q, Wang X R, Luo X Y, Wang R Q, Payne M G, Yang F, Zhou X J, Chen X, Zhan M S 2010 Phys. Rev. Lett. 105 220404

    [23]

    Vogel W, de Matos Filho R L 1995 Phys. Rev. A 52 4214

  • [1] Zhang Yin-Chao, Shao Shi-Sheng, Tan Kun, Hu Huan-Ling, Hong Guang-Lie, Zhao Yue-Feng. Raman lidar for profiling atmospheric CO2. Acta Physica Sinica, 2006, 55(2): 983-987. doi: 10.7498/aps.55.983
    [2] Zhang Qi-Wei, Zhai Ji-Wei, Yue Zhen-Xing. Raman spectra studies on (Ba,Sr)TiO3 ceramics under dc electric fields. Acta Physica Sinica, 2013, 62(23): 237702. doi: 10.7498/aps.62.237702
    [3] ZHANG MING-RONG, YIN ZHI-WEN, LI PEI-JUN, HU GUAN-QIN. DETERMINATION OF LEAD TUNGSTATE CRYSTALLINE STRUCTURE BY LASER RAMAN SCATTERING SPECTRA. Acta Physica Sinica, 1999, 48(5): 898-903. doi: 10.7498/aps.48.898
    [4] ZHANG JIA-TAI. A NEW METHOD FOR DETECTION OF THE ELECTRON TEMPERATURE IN LASER-PLASMA SHORT WAVE CUT OFF OF STIMULATED RAMAN SCATTERING SPECTRUM. Acta Physica Sinica, 1994, 43(1): 64-68. doi: 10.7498/aps.43.64
    [5] CHOU KUANG-CHAO, DAI YUEN-BEN. THE EFFECT OF RECOIL ON THE SCATTERING OF μ-MESONS BY LIGHT NUCLEI. Acta Physica Sinica, 1960, 59(2): 76-80. doi: 10.7498/aps.16.76
    [6] HE YI-ZHEN, YUE LAN-PING. A STUDY OF THE RAMAN SCATTERING OF Ge NANOCRYSTALLITES EMBEDDED IN SiO2 THIN FILMS. Acta Physica Sinica, 1996, 45(10): 1756-1761. doi: 10.7498/aps.45.1756
    [7] Jiang Xiao-Hua, Li Wen-Hong, Liu Shen-Ye, Ding Yong-Kun, Zheng Zhi-Jian, Wang Zhe-Bin, Zhao Bin, Zheng Jian, Hu Guang-Yue, Liu Wan-Dong, Yu Chang-Xuan. Precisely fitting Thomson scattering spectrum in laser-produced plasmas. Acta Physica Sinica, 2005, 54(1): 211-216. doi: 10.7498/aps.54.211
    [8] Pu Xiao-Yun, Yang Zheng, Jiang Nan, Chen Yong-Kang, Dai Hong. Observation of stimulated Raman scattering of weak-gain Raman modes by means of lasing gain. Acta Physica Sinica, 2003, 52(10): 2443-2448. doi: 10.7498/aps.52.2443
    [9] XU- ZHI-ZHAN, TANG YONG-HONG, QIAN AI-DI. INDIRECT EVIDENCE OF FORWARD SCATTERING——PERIODIC STRUCTURE OF THE STIMULATED BRILLOUIN SCATTERING SPECTRA OBTAINED IN LASER.PLASMA INTERACTION EXPERIMENTS. Acta Physica Sinica, 1988, 37(4): 557-565. doi: 10.7498/aps.37.557
    [10] Zhang Xiao-Dan, Zhao Ying, Zhu Feng, Wei Chang-Chun, Wu Chun-Ya, Gao Yan-Tao, Hou Guo-Fu, Sun Jian, Geng Xin-Hua, Xiong Shao-Zhen. A study of Raman and optical emission spectroscopy on microcrystalline silicon films deposited by VHF-PECVD. Acta Physica Sinica, 2005, 54(1): 445-449. doi: 10.7498/aps.54.445
  • Citation:
Metrics
  • Abstract views:  1268
  • PDF Downloads:  428
  • Cited By: 0
Publishing process
  • Received Date:  05 January 2011
  • Accepted Date:  01 April 2011
  • Published Online:  15 April 2012

High-gain Raman scattering spectrum of trapped atomic gas

  • 1. Institute of Theoretical and Computational Physics, Shaanxi Normal University, Xi’an 710062, China
Fund Project:  Project supported by the Natural Science Foundation of Shaanxi Province (Grant No.SJ08A12).

Abstract: In this paper, the Raman scattering spectra of cold atomic gas in different environments are closely calculated. Comparing the spectra from the atoms in free and trapped environments, the calculation result gives a right spectrum structure for the free atoms and reveals a distinct high-gain spectrum exhibiting a comb-like structure for the harmonic trapped atoms. The spectral peaks of the trapped spectrum are uniformly distributed and the distance between adjacent spectral peaks exactly equals the frequency of the trap. The nonlinear gain scheme and the gain conditions of the Raman scattering process are clearly given in this paper.

Reference (23)

Catalog

    /

    返回文章
    返回