Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High efficient anti-Stokes signal conversion in photonic crystal fiber

Shen Xiang-Wei Yu Chong-Xiu Sang Xin-Zhu Yuan Jin-Hui Han Ying Xia Chang-Ming Hou Lan-Tian Rao Fen Xia Min Yin Xiao-Li

High efficient anti-Stokes signal conversion in photonic crystal fiber

Shen Xiang-Wei, Yu Chong-Xiu, Sang Xin-Zhu, Yuan Jin-Hui, Han Ying, Xia Chang-Ming, Hou Lan-Tian, Rao Fen, Xia Min, Yin Xiao-Li
PDF
Get Citation
  • The anti-Stokes frequency conversion based on four-wave mixing (FWM) has been widely used to generate short-wavelength radiation for high resolution imaging, direct excitation of electronic molecular transitions, and so on. For achieving more effective anti-Stokes conversion, we use the Ti: sapphire laser with a central wavelength of 810 nm and a pulse width of 120 fs as a pump source, and the degenerated FWMs of the higher mode and the fundamental mode are achieved respectively in 0.5 m long and 3 m long photonic crystal fibers (PCFs) with a zero dispersion wavelength of fundamental mode around 820nm in our experiment. The anti-Stokes signals around 560nm are generated efficiently at the fundamental phase matching. The maximum power ratios of anti-Stokes signal at 562 nm to the residual pump component and the Stokes signal are above 33:1 and 25:1, respectively. The maximum conversion efficiencies are achieved to be up to 48% and 34% in theory and experiment, respectively. And then the variation laws of the phase matching and the output spectrum with pump power, wavelength and the fiber length are obtained and the discrepancy between theoretical and experimental results is analyzed. Moreover, the effects of more factors on experimental results are discussed.
    • Funds: Project supported by the National Key Basic Research Special Foundation of China (Grant Nos. 2010CB327605 and 2010CB328300), the Specialized Research Fund for the Young Scholars Program of Beijing University of Posts and Telecommunications (Grant Nos. 2011RC0309, 2011RC008, 2009RC0314), and the Specialized Research Fund for the Doctoral Program of Beijing University of Posts and Telecommunications (Grant No. CX201023).
    [1]

    Knight J C 2003 Nature 424 847

    [2]

    Russell P St J 2003 Science 299 358

    [3]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [4]

    Sang X Z, Chu P K, Yu C X 2005 Opt.Quantum Electron. 37 965

    [5]

    Zheltikov A M 2006 J. Opt. A: Pure Appl. Opt. 8 S47

    [6]

    Reeves WH, Skryabin D V, Biancalana F, Knight J C, Russell P S, Omenetto F G, Efimov A, Taylor A J 2003 Nature 424 511

    [7]

    Finazzi V, Monro T M, Richardson D J 2003 IEEE Photon. Technol. Lett. 15 1246

    [8]

    Asimakis S, Petropoulos P, Poletti F, Leong J Y Y, Moore R C, Frampton K E, Feng X, Loh W H, Richardson D J 2007 Opt. Exp. 15 596

    [9]

    Provino L, Dudley J M, Maillotte H, Grossard N, Windeler R S, Eggleton B J 2001 Electron. Lett. 37 558

    [10]

    Hu M L, Wang Q Y, Li Y F, Wang Z, Chai L, Zhang W L 2005 Acta Phys. Sin. 54 4411 (in Chinese) [胡明列, 王清月, 栗岩峰, 王专, 柴路, 张伟力 2005 物理学报 54 4411]

    [11]

    Ji L L, Lu P X, Chen W, Dai N L, Zhang J H, Jiang Z W, Li J Y, Li W 2008 Acta Phys. Sin. 57 5973 (in Chinese) [季玲玲, 陆陪祥, 陈伟, 戴能利, 张继皇, 蒋作文, 李进延, 李伟 2008 物理学报 57 5973]

    [12]

    Wang W, Gao F, Hou L T, Zhou G Y, 2008 Chin. Phys. Lett. 25 2055

    [13]

    Yuan J H, Sang X Z, Yu C X, Li S G, Zhou G Y, Hou L T 2010 IEEE J. Quantum Electron. 46 728

    [14]

    Ji L L, Chen W, Cao Y C, Yang Z Y, Lu P X 2009 Acta Phys. Sin. 58 5462 (in Chinese) [季玲玲, 陈伟, 曹迎春, 杨振宇, 陆陪祥 2009 物理学报 58 5462]

    [15]

    Stark S P, Biancalana F, Podlipensky A, Russell P S J 2011 Phys. Rev. A 83 23808

    [16]

    Dudley J M, Provino L, Grossard N, Maillotte H, Windeler R S, Eggleton B J, Coen S 2002 J. Opt. Soc. Am. B 19 765

    [17]

    Zewail A H 1988 Science 242 1645

    [18]

    Hadley G R 1998 J. Lightwave Technol. 16 134

    [19]

    Agrawal G P 1986 Nonlinear Fiber Optics. 3rd ed (California: San Diego) p280

    [20]

    Husakou A V, Herrmann J 2003 Appl. Phys. Lett. 83 3867

    [21]

    Abedin K S, Gopinath J T, Ippen E P, Kerbage C E,Windeler R S, Eggleton B J 2002 Appl. Phys. Lett. 81 1384

    [22]

    Xu Y Q, Murdoch S G, Leonhardt R, Harvey J D 2008 Opt. Lett. 33 1351

    [23]

    Hu M L, Wang C Y, Song Y J, Li Y F, Chai L 2006 Opt. Exp. 14 1189

  • [1]

    Knight J C 2003 Nature 424 847

    [2]

    Russell P St J 2003 Science 299 358

    [3]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [4]

    Sang X Z, Chu P K, Yu C X 2005 Opt.Quantum Electron. 37 965

    [5]

    Zheltikov A M 2006 J. Opt. A: Pure Appl. Opt. 8 S47

    [6]

    Reeves WH, Skryabin D V, Biancalana F, Knight J C, Russell P S, Omenetto F G, Efimov A, Taylor A J 2003 Nature 424 511

    [7]

    Finazzi V, Monro T M, Richardson D J 2003 IEEE Photon. Technol. Lett. 15 1246

    [8]

    Asimakis S, Petropoulos P, Poletti F, Leong J Y Y, Moore R C, Frampton K E, Feng X, Loh W H, Richardson D J 2007 Opt. Exp. 15 596

    [9]

    Provino L, Dudley J M, Maillotte H, Grossard N, Windeler R S, Eggleton B J 2001 Electron. Lett. 37 558

    [10]

    Hu M L, Wang Q Y, Li Y F, Wang Z, Chai L, Zhang W L 2005 Acta Phys. Sin. 54 4411 (in Chinese) [胡明列, 王清月, 栗岩峰, 王专, 柴路, 张伟力 2005 物理学报 54 4411]

    [11]

    Ji L L, Lu P X, Chen W, Dai N L, Zhang J H, Jiang Z W, Li J Y, Li W 2008 Acta Phys. Sin. 57 5973 (in Chinese) [季玲玲, 陆陪祥, 陈伟, 戴能利, 张继皇, 蒋作文, 李进延, 李伟 2008 物理学报 57 5973]

    [12]

    Wang W, Gao F, Hou L T, Zhou G Y, 2008 Chin. Phys. Lett. 25 2055

    [13]

    Yuan J H, Sang X Z, Yu C X, Li S G, Zhou G Y, Hou L T 2010 IEEE J. Quantum Electron. 46 728

    [14]

    Ji L L, Chen W, Cao Y C, Yang Z Y, Lu P X 2009 Acta Phys. Sin. 58 5462 (in Chinese) [季玲玲, 陈伟, 曹迎春, 杨振宇, 陆陪祥 2009 物理学报 58 5462]

    [15]

    Stark S P, Biancalana F, Podlipensky A, Russell P S J 2011 Phys. Rev. A 83 23808

    [16]

    Dudley J M, Provino L, Grossard N, Maillotte H, Windeler R S, Eggleton B J, Coen S 2002 J. Opt. Soc. Am. B 19 765

    [17]

    Zewail A H 1988 Science 242 1645

    [18]

    Hadley G R 1998 J. Lightwave Technol. 16 134

    [19]

    Agrawal G P 1986 Nonlinear Fiber Optics. 3rd ed (California: San Diego) p280

    [20]

    Husakou A V, Herrmann J 2003 Appl. Phys. Lett. 83 3867

    [21]

    Abedin K S, Gopinath J T, Ippen E P, Kerbage C E,Windeler R S, Eggleton B J 2002 Appl. Phys. Lett. 81 1384

    [22]

    Xu Y Q, Murdoch S G, Leonhardt R, Harvey J D 2008 Opt. Lett. 33 1351

    [23]

    Hu M L, Wang C Y, Song Y J, Li Y F, Chai L 2006 Opt. Exp. 14 1189

  • [1] Zhang Xiao-Juan, Zhao Jian-Lin. A synthetical simulation and analysis of band-gap and modal field of photonic crystal fiber. Acta Physica Sinica, 2010, 59(9): 6299-6305. doi: 10.7498/aps.59.6299
    [2] Hou Guo-Hui, Luo Teng, Chen Bing-Ling, Liu Jie, Lin Zi-Yang, Chen Dan-Ni, Qu Jun-Le. Experimental study on two-photon fluorescence and coherent anti-Stokes Raman scattering microscopy. Acta Physica Sinica, 2017, 66(10): 104204. doi: 10.7498/aps.66.104204
    [3] Li Ya-Hui, Liang Run-Fu, Qiu Jun-Peng, Lin Zi-Yang, Qu Jun-Le, Liu Li-Xin, Yin Jun, Niu Han-Ben. Vector analysis of the coherent anti-Stokes Raman scattering signals generated under the tightly focused condition. Acta Physica Sinica, 2014, 63(23): 233301. doi: 10.7498/aps.63.233301
    [4] Zhang Sai-Wen, Chen Dan-Ni, Liu Shuang-Long, Liu Wei, Niu Han-Ben. Nanometer resolution coherent anti-Stokes Raman scattering microscopic imaging. Acta Physica Sinica, 2015, 64(22): 223301. doi: 10.7498/aps.64.223301
    [5] Liu Shuang-Long, Liu Wei, Chen Dan-Ni, Qu Jun-Le, Niu Han-Ben. Research on coherent anti-Stokes Raman scattering microscopy. Acta Physica Sinica, 2016, 65(6): 064204. doi: 10.7498/aps.65.064204
    [6] Lü Ming-Tao, Yan Ming-Yue, Ai Bao-Quan, Gao Tian-Fu, Zheng Zhi-Gang. Stokes efficiency in the overdamped Brownian ratchet. Acta Physica Sinica, 2017, 66(22): 220501. doi: 10.7498/aps.66.220501
    [7] Liu Wei, Chen Dan-Ni, Liu Shuang-Long, Niu Han-Ben. Diffraction barrier breakthrough in coherent anti-Stokes Raman scattering microscopy and detection limitanalysis. Acta Physica Sinica, 2013, 62(16): 164202. doi: 10.7498/aps.62.164202
    [8] Yin Jun, Yu Feng, Hou Guo-Hui, Liang Run-Fu, Tian Yu-Liang, Lin Zi-Yang, Niu Han-Ben. Theoretical and experimental study on the multi-color broadband coherent anti-Stokes Raman scattering processes. Acta Physica Sinica, 2014, 63(7): 073301. doi: 10.7498/aps.63.073301
    [9] Liu Shuang-Long, Liu Wei, Chen Dan-Ni, Niu Han-Ben. Generation of dark hollow beams used in sub-diffraction-limit imaging in coherent anti-Stokes Raman scattering microscopy. Acta Physica Sinica, 2014, 63(21): 214601. doi: 10.7498/aps.63.214601
    [10] Zheng Juan-Juan, Yao Bao-Li, Shao Xiao-Peng. Nonresonant background suppression in wide-field Coherent anti-Stokes Raman scattering microscopy with transport of intensity equation based phase imaging. Acta Physica Sinica, 2017, 66(11): 114206. doi: 10.7498/aps.66.114206
    [11] Peng Ya-Jing, Sun Shuang, Song Yun-Fei, Yang Yan-Qiang. Coherent anti-Stokes Raman scattering spectrum of vibrational properties of liquid nitromethane molecules. Acta Physica Sinica, 2018, 67(2): 024208. doi: 10.7498/aps.67.20171828
  • Citation:
Metrics
  • Abstract views:  1706
  • PDF Downloads:  703
  • Cited By: 0
Publishing process
  • Received Date:  21 December 2010
  • Accepted Date:  05 May 2011
  • Published Online:  15 April 2012

High efficient anti-Stokes signal conversion in photonic crystal fiber

  • 1. State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China;
  • 2. Institute of Infrared Optical Fibers & Sensors, Qinhuangdao 066004, China;
  • 3. State Key Laboratory of Metastable Materials Science &Technology, Qinhuangdao 066004, China
Fund Project:  Project supported by the National Key Basic Research Special Foundation of China (Grant Nos. 2010CB327605 and 2010CB328300), the Specialized Research Fund for the Young Scholars Program of Beijing University of Posts and Telecommunications (Grant Nos. 2011RC0309, 2011RC008, 2009RC0314), and the Specialized Research Fund for the Doctoral Program of Beijing University of Posts and Telecommunications (Grant No. CX201023).

Abstract: The anti-Stokes frequency conversion based on four-wave mixing (FWM) has been widely used to generate short-wavelength radiation for high resolution imaging, direct excitation of electronic molecular transitions, and so on. For achieving more effective anti-Stokes conversion, we use the Ti: sapphire laser with a central wavelength of 810 nm and a pulse width of 120 fs as a pump source, and the degenerated FWMs of the higher mode and the fundamental mode are achieved respectively in 0.5 m long and 3 m long photonic crystal fibers (PCFs) with a zero dispersion wavelength of fundamental mode around 820nm in our experiment. The anti-Stokes signals around 560nm are generated efficiently at the fundamental phase matching. The maximum power ratios of anti-Stokes signal at 562 nm to the residual pump component and the Stokes signal are above 33:1 and 25:1, respectively. The maximum conversion efficiencies are achieved to be up to 48% and 34% in theory and experiment, respectively. And then the variation laws of the phase matching and the output spectrum with pump power, wavelength and the fiber length are obtained and the discrepancy between theoretical and experimental results is analyzed. Moreover, the effects of more factors on experimental results are discussed.

Reference (23)

Catalog

    /

    返回文章
    返回