Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pressure increase in foam-solid target from X-ray driven shock waves

Zhang Lu Yang Jia-Min

Pressure increase in foam-solid target from X-ray driven shock waves

Zhang Lu, Yang Jia-Min
PDF
Get Citation
  • A strong pressure increase is produced by X-ray heating a foam-solid target in comparison with heating directly the solid target, due to impedance mismatch at the foam-solid interface. We study the pressure increase of CH foam-aluminum target, and find that only by shock present in foam can the ablative pressure in aluminum increase. In this paper an analytical model based on strong wave assumption is developed to study the shock impedance mismatching crossing the interface and the interaction of rarefaction with shock. We evaluate the shock pressure amplified in the aluminum layer as a function of density and adiabatic exponent, and show that the amplified pressure is a short high pressure pulse which is destroyed by rarefactions. This is in agreement with simulation results by MULTI code.
    [1]

    Dunne D, Borghesi M, Iwase A, Jones M W, Taylor R, Willi O 1995 Phys. Rev. Lett. 75 3858

    [2]

    Lindl J 1995 Phys. Plasmas 2 3933

    [3]

    Willi O, Barringer L, Bell A, Borghesi M, Davies J, Gaillard R, Iwase A, MacKinnon A, Malka G, Meyer C, Nuruzzaman S, Taylor R, Vickers C, Hoarty D, Gobby P, Johnson R, Watt R G, Blanchot N, Canaud B, Croso H, Meyer B, Miquel J L, Reverdin C, Pukhov A, Meyer-ter-Vehn J 2000 Nucl.Fusion 40 537

    [4]

    Hall T, Batani D, Nazarov W, Koenig M, Benuzzi A 2002 Laser Part. Beams 20 303

    [5]

    Temporal M, Atzeni S, Batani D, Koenig M 2000 Eur. Phys. J. D 12 509

    [6]

    Atzeni S, Meyer-ter-Vehn J 2004 The physics of inertial fusion (Oxford: Clarendon Press) p220

    [7]

    LiWX 2003 One-Dimensional Nonsteady Flow and Shock Waves p270 (in Chinese) [李维新 2003 一维不定常流与冲击波 (北京:国防工业出版社) 第270页]

    [8]

    Zhang Y, Zheng Z Y, Li Y T, Liu F, Li H M, Lu X, Zhang J 2007 Acta Phys. Sin. 56 5931 (in Chinese) [张翼, 郑志远, 李玉同, 刘峰, 李汉明, 鲁欣, 张杰 2007 物理学报 56 5931]

    [9]

    Ramis R, Schmalz R, Meyer-Ter-Vehn J 1988 Comput. Phys. Commun. 49 475

    [10]

    Wang F, Peng X S, Liu S Y, Li Y S, Jiang X H, Ding Y K 2011 Acta Phys. Sin 60 025202 (in Chinese) [王峰, 彭晓世, 刘慎业, 李永升, 蒋小华, 丁永坤 2011 物理学报 60 025202]

  • [1]

    Dunne D, Borghesi M, Iwase A, Jones M W, Taylor R, Willi O 1995 Phys. Rev. Lett. 75 3858

    [2]

    Lindl J 1995 Phys. Plasmas 2 3933

    [3]

    Willi O, Barringer L, Bell A, Borghesi M, Davies J, Gaillard R, Iwase A, MacKinnon A, Malka G, Meyer C, Nuruzzaman S, Taylor R, Vickers C, Hoarty D, Gobby P, Johnson R, Watt R G, Blanchot N, Canaud B, Croso H, Meyer B, Miquel J L, Reverdin C, Pukhov A, Meyer-ter-Vehn J 2000 Nucl.Fusion 40 537

    [4]

    Hall T, Batani D, Nazarov W, Koenig M, Benuzzi A 2002 Laser Part. Beams 20 303

    [5]

    Temporal M, Atzeni S, Batani D, Koenig M 2000 Eur. Phys. J. D 12 509

    [6]

    Atzeni S, Meyer-ter-Vehn J 2004 The physics of inertial fusion (Oxford: Clarendon Press) p220

    [7]

    LiWX 2003 One-Dimensional Nonsteady Flow and Shock Waves p270 (in Chinese) [李维新 2003 一维不定常流与冲击波 (北京:国防工业出版社) 第270页]

    [8]

    Zhang Y, Zheng Z Y, Li Y T, Liu F, Li H M, Lu X, Zhang J 2007 Acta Phys. Sin. 56 5931 (in Chinese) [张翼, 郑志远, 李玉同, 刘峰, 李汉明, 鲁欣, 张杰 2007 物理学报 56 5931]

    [9]

    Ramis R, Schmalz R, Meyer-Ter-Vehn J 1988 Comput. Phys. Commun. 49 475

    [10]

    Wang F, Peng X S, Liu S Y, Li Y S, Jiang X H, Ding Y K 2011 Acta Phys. Sin 60 025202 (in Chinese) [王峰, 彭晓世, 刘慎业, 李永升, 蒋小华, 丁永坤 2011 物理学报 60 025202]

  • [1] He Hong-Liang, Zhu Wen-Jun, Deng Xiao-Liang, Li Ying-Jun, Cui Xin-Lin. Molecular dynamic simulation of shock-induced phase transformation in single crystal iron with nano-void inclusion. Acta Physica Sinica, 2006, 55(10): 5545-5550. doi: 10.7498/aps.55.5545
    [2] Chen Da-Nian, Wang Huan-Ran, Yu Yu-Ying, Tan Hua, Hu Jian-Bo, Dai Cheng-Da. Effective shear modulus in shock-compressed aluminum. Acta Physica Sinica, 2008, 57(4): 2352-2357. doi: 10.7498/aps.57.2352
    [3] Wang Feng, Peng Xiao-Shi, Liu Shen-Ye, Jiang Xiao-Hua, Xu Tao, Ding Yong-Kun, Zhang Bao-Han. Shock experiment with sandwiched target in laser indirect-drive experiment. Acta Physica Sinica, 2011, 60(11): 115203. doi: 10.7498/aps.60.115203
    [4] Yu Yin, Wang Wen-Qiang, Yang Jia, Zhang You-Jun, Jiang Dong-Dong, He Hong-Liang. Mesoscopic picture of fracture in porous brittle material under shock wave compression. Acta Physica Sinica, 2012, 61(4): 048103. doi: 10.7498/aps.61.048103
    [5] Wang Feng, Peng Xiao-Shi, Mei Lu-Sheng, Liu Shen-Ye, Jiang Xiao-Hua, Ding Yong-Kun. Shock timing experiment based on imaging velocity interferometer system for any reflector. Acta Physica Sinica, 2012, 61(13): 135201. doi: 10.7498/aps.61.135201
    [6] Huang Xiu-Guang, Wu Jiang, Wang Rui-Rong, Ma Min-Xun, He Ju-Hua, Ye Jun-Jian, Gu Yuan, Fu Si-Zu. Experimental study of shock wave propagating character in targets driven by an i nclined-incident laser. Acta Physica Sinica, 2003, 52(8): 1877-1881. doi: 10.7498/aps.52.1877
    [7] Feng Yu-Jun, Du Jin-Mei, Gu Yan, Jiang Dong-Dong. Resistivity of PZT 95/5 ferroelectric ceramic under shock wave compression. Acta Physica Sinica, 2008, 57(1): 566-570. doi: 10.7498/aps.57.566
    [8] ZHANG JIE, WANG WEI. NUMERICAL SIMULATION STUDY OF LASER-DRIVEN SHOCKWAVE PROPAGATION IN PLANAR Al FOIL TARGETS. Acta Physica Sinica, 2001, 50(4): 741-747. doi: 10.7498/aps.50.741
    [9] Jiang Shao-En, Li Wen-Hong, Sun Ke-Xi, Jiang Xiao-Hua, Liu Yong-Gang, Cui Yan-Li, Chen Jiu-Sen, Ding Yong-Kun, Zheng Zhi-Jian. Shock wave driven by x-ray radiation from cylindrical hohlraum on Shenguang Ⅱlaser. Acta Physica Sinica, 2004, 53(10): 3424-3428. doi: 10.7498/aps.53.3424
    [10] Wu You-Cheng, Liu Gao-Min, Dai Wen-Feng, Gao Zhi-Peng, He Hong-Liang, Hao Shi-Rong, Deng Jian-Jun. Dynamic resistivity of Pb(Zr0.95Ti0.05)O3 depolarized ferroelectric under shock wave compression. Acta Physica Sinica, 2017, 66(4): 047201. doi: 10.7498/aps.66.047201
  • Citation:
Metrics
  • Abstract views:  1488
  • PDF Downloads:  397
  • Cited By: 0
Publishing process
  • Received Date:  05 January 2011
  • Accepted Date:  26 April 2011
  • Published Online:  15 April 2012

Pressure increase in foam-solid target from X-ray driven shock waves

  • 1. Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China;
  • 2. Department of Engineering Physics, Tsinghua University, Beijing 100084, China

Abstract: A strong pressure increase is produced by X-ray heating a foam-solid target in comparison with heating directly the solid target, due to impedance mismatch at the foam-solid interface. We study the pressure increase of CH foam-aluminum target, and find that only by shock present in foam can the ablative pressure in aluminum increase. In this paper an analytical model based on strong wave assumption is developed to study the shock impedance mismatching crossing the interface and the interaction of rarefaction with shock. We evaluate the shock pressure amplified in the aluminum layer as a function of density and adiabatic exponent, and show that the amplified pressure is a short high pressure pulse which is destroyed by rarefactions. This is in agreement with simulation results by MULTI code.

Reference (10)

Catalog

    /

    返回文章
    返回