Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

One-dimensional simulation of dielectric barrier glow discharge in atmospheric pressure Ar

Zhang Zeng-Hui Shao Xian-Jun Zhang Guan-Jun Li Ya-Xi Peng Zhao-Yu

One-dimensional simulation of dielectric barrier glow discharge in atmospheric pressure Ar

Zhang Zeng-Hui, Shao Xian-Jun, Zhang Guan-Jun, Li Ya-Xi, Peng Zhao-Yu
PDF
Get Citation
  • In order to investigate the mechanism of dielectric barrier atmospheric pressure glow discharge(APGD) in Ar, an one-dimensional multiple particle self-consistent coupled fluid model is proposed. And the finite-element method (FEM) is used in the numerical calculation model, so the periodic evolvement waveforms of gas voltage, barrier surface charge density and discharge current density are investigated. The spatio temporal distributions of electrons, ions, metastable particles density and space electrical field are also obtained. The simulation results show that the charges accumulated on the barrier dielectric surface play an important role in ignition and extinguishment of the discharge. With the increase of applied voltage amplitude, the DBD breakdown occurs ahead of time, and discharge current density and the surface charge density increase gradually, which indicate that the discharge process becomes fierce. Furthermore, with the increase of relative permittivity of dielectric material, the discharge current density also gradually increases. The spatio temporal distributions of the particles density and the space electrical field show that the DBD breakdown occurs every half the AC period and the discharge under conditions considered in this model is a typical atmospheric pressure glow discharge(APGD), having an obvious cathode fall region, a negative glow region, and a positive column region.
    • Funds: Project supported by the Foundation for the Author of National Excellent Doctoral Dissertation of PR China (FANEDD) (Grant No.200338).
    [1]

    Luo H Y,Wang X X,Mao T, Liang Z, Lv B, Guan Z C,Wang L M 2008 Acta Phys. Sin. 57 4298 (in Chinese) [罗海云, 王新新, 毛婷, 梁卓, 吕博, 关志成, 王黎明 2008 物理学报 57 4298]

    [2]

    Li X C, Jia P Y, Liu Z H, Li L C, Dong L F 2008 Acta Phys. Sin. 57 1001 (in Chinese) [李雪辰, 贾鹏英, 刘志辉, 李立春, 董丽芳 2008 物理学报 57 1001]

    [3]

    Wang X X, Lu M Z, Pu Y K 2002 Acta Phys. Sin. 51 2778 (in Chinese) [王新新, 芦明泽, 蒲以康 2002 物理学报 51 2778]

    [4]

    Kanazawa S, Kogoma M, Moriwaki T, Okazaki S 1988 J. Phys D 21 838

    [5]

    Okazaki S, Kogoma M, Uehara M 1993 J. Phys. D 26 889

    [6]

    Massines F, Gouda G 1998 J. Phys. D 31 3411

    [7]

    Tsai P P,Wadsworth L C, Roth J R 1997 Textile Res. J. 67 359

    [8]

    Hao Y P, Yang L, Tu E L, Chen J Y, Zhu Z W, Wang X L 2010 Acta Phys. Sin. 59 2610 (in Chinese) [郝艳捧, 阳林, 涂恩来, 陈建阳, 朱展文, 王晓蕾 2010 物理学报 59 2610]

    [9]

    Golubovskii Y B, Maiorov V A, Behnke J 2003 J. Phys. D 36 39

    [10]

    Zhang P, Kortshagen U 2006 J. Phys. D 39 153

    [11]

    Massines F, Rabehi A, Decomps P, Gadri R B, Ségur P, Mayoux C 1998 J. App. Phys. 83 2950

    [12]

    Choi Y H, Kim J H, Hwang Y S 2006 Thin Solid Films 506/507 389

    [13]

    Wang Y H, Wang D Z 2003 Acta Phys. Sin. 52 1694 (in Chinese) [王艳辉, 王德真 2003 物理学报 52 1694]

    [14]

    Lü B, Wang X X, Luo H Y, Liang Z 2008 Advanced Technology of Electrical Engineering and Energy 27 63 (in Chinese) [吕博, 王新新, 罗海云, 梁卓 2008 电工电能新技术 27 63]

    [15]

    Shi H, Wang Y H, Wang D Z 2008 Physics of Plasma 15 122306

    [16]

    Wang Y H, Shi H, Sun J Z, Wang D Z 2009 Physics of Plasma 16 063507

    [17]

    Shao X J, Ma Y, Li Y X, Zhang Z H, Zhang G H 2010 High Voltage Engineering 36 2047 (in Chinese) [邵先军, 马跃, 李娅西, 张增辉, 张冠军 2010 高电压技术 36 2047]

    [18]

    Balcon N, Hagelaar G J M, Boeuf J P 2008 IEEE Trans. Plasma Sci 36 2782

    [19]

    Zhang H Y, Wang D Z, Wang X G 2007 Chin. Phys. 16 1089

    [20]

    Cook D C, Haydon S C 1984 IEE Proc. Sci. Meas. Tech. 131 145

    [21]

    Cook D C, Haydon S C 1984 IEE Proc. Sci. Meas.Tech. 131 153

    [22]

    Hagelaar G J M, Pitchford L C 2005 Plasma Source Sci. Tech. 15 722

    [23]

    Moravej M, Yang X, Barankin M 2006 Plasma Sources Sci. Technol 15 204

    [24]

    Byoung-kuk Min, Seok-Hyun Lee, Hun-Gun Park 2000 J. Vac. Sci. Technol. A 18 349

    [25]

    Dyatko N A, Ionikh Y Z, Kochetov I V 2008 J. Phys. D 41 055204

    [26]

    Rafatov I R, Akbar D, Bilikmen S 2007 Physics Letters A 367 114

    [27]

    Grubert G K, Loffhagen D, Uhrlandt D 2005 Femlab Conference 2005

    [28]

    Morrow R, Sato N 1999 J. Phys. D 32 L20

    [29]

    Codina R 1998 Comput. Metholds Appl. Mech. Eng. 156 185

  • [1]

    Luo H Y,Wang X X,Mao T, Liang Z, Lv B, Guan Z C,Wang L M 2008 Acta Phys. Sin. 57 4298 (in Chinese) [罗海云, 王新新, 毛婷, 梁卓, 吕博, 关志成, 王黎明 2008 物理学报 57 4298]

    [2]

    Li X C, Jia P Y, Liu Z H, Li L C, Dong L F 2008 Acta Phys. Sin. 57 1001 (in Chinese) [李雪辰, 贾鹏英, 刘志辉, 李立春, 董丽芳 2008 物理学报 57 1001]

    [3]

    Wang X X, Lu M Z, Pu Y K 2002 Acta Phys. Sin. 51 2778 (in Chinese) [王新新, 芦明泽, 蒲以康 2002 物理学报 51 2778]

    [4]

    Kanazawa S, Kogoma M, Moriwaki T, Okazaki S 1988 J. Phys D 21 838

    [5]

    Okazaki S, Kogoma M, Uehara M 1993 J. Phys. D 26 889

    [6]

    Massines F, Gouda G 1998 J. Phys. D 31 3411

    [7]

    Tsai P P,Wadsworth L C, Roth J R 1997 Textile Res. J. 67 359

    [8]

    Hao Y P, Yang L, Tu E L, Chen J Y, Zhu Z W, Wang X L 2010 Acta Phys. Sin. 59 2610 (in Chinese) [郝艳捧, 阳林, 涂恩来, 陈建阳, 朱展文, 王晓蕾 2010 物理学报 59 2610]

    [9]

    Golubovskii Y B, Maiorov V A, Behnke J 2003 J. Phys. D 36 39

    [10]

    Zhang P, Kortshagen U 2006 J. Phys. D 39 153

    [11]

    Massines F, Rabehi A, Decomps P, Gadri R B, Ségur P, Mayoux C 1998 J. App. Phys. 83 2950

    [12]

    Choi Y H, Kim J H, Hwang Y S 2006 Thin Solid Films 506/507 389

    [13]

    Wang Y H, Wang D Z 2003 Acta Phys. Sin. 52 1694 (in Chinese) [王艳辉, 王德真 2003 物理学报 52 1694]

    [14]

    Lü B, Wang X X, Luo H Y, Liang Z 2008 Advanced Technology of Electrical Engineering and Energy 27 63 (in Chinese) [吕博, 王新新, 罗海云, 梁卓 2008 电工电能新技术 27 63]

    [15]

    Shi H, Wang Y H, Wang D Z 2008 Physics of Plasma 15 122306

    [16]

    Wang Y H, Shi H, Sun J Z, Wang D Z 2009 Physics of Plasma 16 063507

    [17]

    Shao X J, Ma Y, Li Y X, Zhang Z H, Zhang G H 2010 High Voltage Engineering 36 2047 (in Chinese) [邵先军, 马跃, 李娅西, 张增辉, 张冠军 2010 高电压技术 36 2047]

    [18]

    Balcon N, Hagelaar G J M, Boeuf J P 2008 IEEE Trans. Plasma Sci 36 2782

    [19]

    Zhang H Y, Wang D Z, Wang X G 2007 Chin. Phys. 16 1089

    [20]

    Cook D C, Haydon S C 1984 IEE Proc. Sci. Meas. Tech. 131 145

    [21]

    Cook D C, Haydon S C 1984 IEE Proc. Sci. Meas.Tech. 131 153

    [22]

    Hagelaar G J M, Pitchford L C 2005 Plasma Source Sci. Tech. 15 722

    [23]

    Moravej M, Yang X, Barankin M 2006 Plasma Sources Sci. Technol 15 204

    [24]

    Byoung-kuk Min, Seok-Hyun Lee, Hun-Gun Park 2000 J. Vac. Sci. Technol. A 18 349

    [25]

    Dyatko N A, Ionikh Y Z, Kochetov I V 2008 J. Phys. D 41 055204

    [26]

    Rafatov I R, Akbar D, Bilikmen S 2007 Physics Letters A 367 114

    [27]

    Grubert G K, Loffhagen D, Uhrlandt D 2005 Femlab Conference 2005

    [28]

    Morrow R, Sato N 1999 J. Phys. D 32 L20

    [29]

    Codina R 1998 Comput. Metholds Appl. Mech. Eng. 156 185

  • [1] Zhang Zeng-Hui, Zhang Guan-Jun, Shao Xian-Jun, Chang Zheng-Shi, Peng Zhao-Yu, Xu Hao. Modelling study of dielectric barrier glow discharge in Ar/NH3 mixture at atmospheric pressure. Acta Physica Sinica, 2012, 61(24): 245205. doi: 10.7498/aps.61.245205
    [2] Shao Xian-Jun, Ma Yue, Li Ya-Xi, Zhang Guan-Jun. One-dimensional simulation of low pressure xenon dielectric barrier discharge. Acta Physica Sinica, 2010, 59(12): 8747-8754. doi: 10.7498/aps.59.8747
    [3] Sun An-Bang, Li Han-Wei, Xu Peng, Zhang Guan-Jun. Monte Carlo simulations of electron transport coefficients in low temperature streamer discharge plasmas. Acta Physica Sinica, 2017, 66(19): 195101. doi: 10.7498/aps.66.195101
    [4] Wang Xue-Yang, Qi Zhi-Hua, Song Ying, Liu Dong-Ping. Bacteria sterilization application by using plasma activated physiological saline. Acta Physica Sinica, 2016, 65(12): 123301. doi: 10.7498/aps.65.123301
    [5] Zhou Li-Na, Wang Xin-Bing. A fluid model for the simulation of discharges in microhollow cathode. Acta Physica Sinica, 2004, 53(10): 3440-3446. doi: 10.7498/aps.53.3440
    [6] Zhao Yue-Feng, Wang Chao, Wang Wei-Zong, Li Li, Sun Hao, Shao Tao, Pan Jie. Numerical simulation on particle density and reaction pathways in methane needle-plane discharge plasma at atmospheric pressure. Acta Physica Sinica, 2018, 67(8): 085202. doi: 10.7498/aps.67.20172192
    [7] Yao Cong-Wei, Ma Heng-Chi, Chang Zheng-Shi, Li Ping, Mu Hai-Bao, Zhang Guan-Jun. Simulations of the cathode falling characteristics and its influence factors in atmospheric pressure dielectric barrier glow discharge pulse. Acta Physica Sinica, 2017, 66(2): 025203. doi: 10.7498/aps.66.025203
    [8] Liu Fu-Cheng, Yan Wen, Wang De-Zhen. Two-dimensional simulation of atmospheric pressure cold plasma jets in a needle-plane electrode configuration. Acta Physica Sinica, 2013, 62(17): 175204. doi: 10.7498/aps.62.175204
    [9] He Shou-Jie, Zhang Zhao, Zhao Xue-Na, Li Qing. Spatio-temporal characteristics of microhollow cathode sustained discharge. Acta Physica Sinica, 2017, 66(5): 055101. doi: 10.7498/aps.66.055101
    [10] He Shou-Jie, Zhou Jia, Qu Yu-Xiao, Zhang Bao-Ming, Zhang Ya, Li Qing. Simulation on complex dynamics of hollow cathode discharge in argon. Acta Physica Sinica, 2019, 68(21): 215101. doi: 10.7498/aps.68.20190734
  • Citation:
Metrics
  • Abstract views:  2063
  • PDF Downloads:  790
  • Cited By: 0
Publishing process
  • Received Date:  21 February 2011
  • Accepted Date:  10 May 2011
  • Published Online:  15 April 2012

One-dimensional simulation of dielectric barrier glow discharge in atmospheric pressure Ar

  • 1. State Key Lab of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Fund Project:  Project supported by the Foundation for the Author of National Excellent Doctoral Dissertation of PR China (FANEDD) (Grant No.200338).

Abstract: In order to investigate the mechanism of dielectric barrier atmospheric pressure glow discharge(APGD) in Ar, an one-dimensional multiple particle self-consistent coupled fluid model is proposed. And the finite-element method (FEM) is used in the numerical calculation model, so the periodic evolvement waveforms of gas voltage, barrier surface charge density and discharge current density are investigated. The spatio temporal distributions of electrons, ions, metastable particles density and space electrical field are also obtained. The simulation results show that the charges accumulated on the barrier dielectric surface play an important role in ignition and extinguishment of the discharge. With the increase of applied voltage amplitude, the DBD breakdown occurs ahead of time, and discharge current density and the surface charge density increase gradually, which indicate that the discharge process becomes fierce. Furthermore, with the increase of relative permittivity of dielectric material, the discharge current density also gradually increases. The spatio temporal distributions of the particles density and the space electrical field show that the DBD breakdown occurs every half the AC period and the discharge under conditions considered in this model is a typical atmospheric pressure glow discharge(APGD), having an obvious cathode fall region, a negative glow region, and a positive column region.

Reference (29)

Catalog

    /

    返回文章
    返回