Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental study of thermal conductivity of polyethylene nanowire arrays fabricated by the nanoporous template wetting technique

Cao Bing-Yang Dong Ruo-Yu Kong Jie Chen Heng Xu Yan Yung Kai-Leung Cai An

Experimental study of thermal conductivity of polyethylene nanowire arrays fabricated by the nanoporous template wetting technique

Cao Bing-Yang, Dong Ruo-Yu, Kong Jie, Chen Heng, Xu Yan, Yung Kai-Leung, Cai An
PDF
Get Citation
  • We fabricate low-density polyethylene (LDPE) nanowire array with a diameter of 200 nm by using a nanoporous template wetting technique, and the thermal conductivity at 2080℃ is experimentally studied by a nanosecond laser flash method. The measured thermal conductivity of the fabricated nanowire array is about 2.2 W/mK at room temperature, which is about one order of magnitude higher than its bulk counterpart. The thermal conductivity is found to increase slightly with the increase of temperature. The estimated thermal conductivity of a single LDPE nanowire is as high as 5 W/mK at room temperature. The high orientation of chain of the LDPE nanowire may arise from the integrative effects of shear rate, vibrational perturbation, translocation, nanoconfinement and crystallization. Findings in this study provide a useful strategy for enhancing the intrinsic thermal properties of polymer nanostructures.
    • Funds: Project supported by the National Natural Foundation of China (Grant Nos. 50976052, 51136001), the Program for New Century Excellent Talents in University, the Chun Hui Program of State Education Ministry (Grant No. Z2009-1-71004), the Aero-Science Foundation of China (Grant No. 2009ZH53073), and the Funding from the Hong Kong Research Grants Council (Grant No.PolyU 5347/08E).
    [1]

    Wang R Y, Segalman R A, Majumdar A 2006 Appl. Phys. Lett. 89 173113

    [2]

    Jin J Z, Manoharan M P, Wang Q, Haque M A 2009 Appl. Phys. Lett. 95 033113

    [3]

    Losego M D, Moh L, Arpin K A, Cahill D G, Braun P V 2010 Appl. Phys. Lett. 97 011908

    [4]

    Chen G 2000 Int. J. Thermal Sci. 39 471

    [5]

    Liang X G 2007 Chin. Sci. Bull. 52 2457

    [6]

    Cao B Y, Li Y W 2010 J. Chem. Phys. 133 024106

    [7]

    Wang Z L, Guo L J, Tang D W, Zhu Y T 2008 Acta Phys. Sin. 57 3391 (in Chinese) [王照亮, 梁金国, 唐大伟, Zhu Y T 2008 物理学报 57 3391]

    [8]

    Hou Q W, Cao B Y, Guo Z Y 2009 Acta Phys. Sin. 58 7809 (in Chinese) [侯泉文, 曹炳阳, 过增元 2009 物理学报 58 7809]

    [9]

    Jin W, Hui N J, Qu S X 2011 Acta Phys. Sin. 60 016301 (in Chinese) [金蔚, 惠宁菊, 屈世显 2011 物理学报 60 016301]

    [10]

    Bao Z G, Chen Y P, Ouyang T, Yang K K, Zhong J X 2011 60 028103 (in Chinese) [鲍志刚, 陈元平, 欧阳滔, 杨凯科, 钟建新 2011 物理学报 60 028103]

    [11]

    Huxtable ST, Cahill DG, Shenogin S, Xue LP, Ozisik R, Barone P, Usrey M, Strano MS, Siddons G, Shim M, Keblinski P 2003 Nature Mater. 2 731

    [12]

    Henry A, Chen G 2008 Phys. Rev. Lett. 101 235502

    [13]

    Henry A, Chen G 2009 Phys. Rev. B 79 144305

    [14]

    Wang Z H, Carter J A, Lagutchev A, Koh Y K, Seong N H, Cahill D G, Dlott D D 2007 Science 317 787

    [15]

    Choy C L, Fei Y, Xi T G 1993 J. Polymer Sci. B: Polymer Phys. 31 365

    [16]

    Choy C L, Wong Y W, Yang G W, Kanamoto T 1999 J. Polymer Sci. B: Polymer Phys. 37 3359

    [17]

    Fujishiro H, Ikebe M, Kashima T, Yamanaka A 1998 Jpn. J. Appl. Phys. 37 1994

    [18]

    Liu J, Yang R G 2010 Phys. Rev. B 81 174122

    [19]

    Shen S, Henry A, Tong J, Zheng RT, Chen G 2010 Nature Nanotech. 5 251

    [20]

    Steinhart M, Wendorff JH, Greiner A,Wehrspohn RB, Nielsch K, Schilling J, Choi J, Gosele U 2002 Science 296 1997

    [21]

    Kong J, Xu Y, Yung K L, Xie YC, He L 2009 J. Phys. Chem. C 113 624

    [22]

    Rendon S, Burghardt WR, Auad M L, Kornfield J A 2007 Macromolecules 40 6624

    [23]

    Xie H Q, Cai A, Wang X W 2007 Phys. Lett. A 369 120

    [24]

    Abdalla M, Dean D, Theodore M, Fielding J, Nyairo E, Price G 2010 Polymer 51 1614

    [25]

    Absi J, Smith D S, Nait-Ali B, Grandjean S, Berjonnaux J 2005 J. Euro. Ceram. Soc. 25 367

    [26]

    Degiovanni A 1977 Rev Gen Therm (France) 185 420

    [27]

    Lepri S, Livi R, Politi A 2003 Phys. Rep. 377 1

    [28]

    Dhar A 2008 Adv. Phys. 57 457

    [29]

    Venerus D C, Schieber J D, Balasubramanian V, Bush K, Smoukov S 2004 Phys. Rev. Lett. 93 098301

    [30]

    Marencic A P, Adamson D H, Chaikin P M, Register R A 2010 Phys. Rev. E 81 011503

    [31]

    Meller A 2003 J Phys: Condens Matter 15 R581

    [32]

    Garcia-Gutierrez M C, Linares A, Hernandez J J, Rueda J J, Ezquerra T A, Poza P, Davies R J 2010Nano Lett. 10 1472

    [33]

    Mahanandia P, Schneider J J, Khaneft M, Stuhn B, Peixoto T P, Drossel B 2010 Phys. Chem. Chem. Phys. 12 4407

  • [1]

    Wang R Y, Segalman R A, Majumdar A 2006 Appl. Phys. Lett. 89 173113

    [2]

    Jin J Z, Manoharan M P, Wang Q, Haque M A 2009 Appl. Phys. Lett. 95 033113

    [3]

    Losego M D, Moh L, Arpin K A, Cahill D G, Braun P V 2010 Appl. Phys. Lett. 97 011908

    [4]

    Chen G 2000 Int. J. Thermal Sci. 39 471

    [5]

    Liang X G 2007 Chin. Sci. Bull. 52 2457

    [6]

    Cao B Y, Li Y W 2010 J. Chem. Phys. 133 024106

    [7]

    Wang Z L, Guo L J, Tang D W, Zhu Y T 2008 Acta Phys. Sin. 57 3391 (in Chinese) [王照亮, 梁金国, 唐大伟, Zhu Y T 2008 物理学报 57 3391]

    [8]

    Hou Q W, Cao B Y, Guo Z Y 2009 Acta Phys. Sin. 58 7809 (in Chinese) [侯泉文, 曹炳阳, 过增元 2009 物理学报 58 7809]

    [9]

    Jin W, Hui N J, Qu S X 2011 Acta Phys. Sin. 60 016301 (in Chinese) [金蔚, 惠宁菊, 屈世显 2011 物理学报 60 016301]

    [10]

    Bao Z G, Chen Y P, Ouyang T, Yang K K, Zhong J X 2011 60 028103 (in Chinese) [鲍志刚, 陈元平, 欧阳滔, 杨凯科, 钟建新 2011 物理学报 60 028103]

    [11]

    Huxtable ST, Cahill DG, Shenogin S, Xue LP, Ozisik R, Barone P, Usrey M, Strano MS, Siddons G, Shim M, Keblinski P 2003 Nature Mater. 2 731

    [12]

    Henry A, Chen G 2008 Phys. Rev. Lett. 101 235502

    [13]

    Henry A, Chen G 2009 Phys. Rev. B 79 144305

    [14]

    Wang Z H, Carter J A, Lagutchev A, Koh Y K, Seong N H, Cahill D G, Dlott D D 2007 Science 317 787

    [15]

    Choy C L, Fei Y, Xi T G 1993 J. Polymer Sci. B: Polymer Phys. 31 365

    [16]

    Choy C L, Wong Y W, Yang G W, Kanamoto T 1999 J. Polymer Sci. B: Polymer Phys. 37 3359

    [17]

    Fujishiro H, Ikebe M, Kashima T, Yamanaka A 1998 Jpn. J. Appl. Phys. 37 1994

    [18]

    Liu J, Yang R G 2010 Phys. Rev. B 81 174122

    [19]

    Shen S, Henry A, Tong J, Zheng RT, Chen G 2010 Nature Nanotech. 5 251

    [20]

    Steinhart M, Wendorff JH, Greiner A,Wehrspohn RB, Nielsch K, Schilling J, Choi J, Gosele U 2002 Science 296 1997

    [21]

    Kong J, Xu Y, Yung K L, Xie YC, He L 2009 J. Phys. Chem. C 113 624

    [22]

    Rendon S, Burghardt WR, Auad M L, Kornfield J A 2007 Macromolecules 40 6624

    [23]

    Xie H Q, Cai A, Wang X W 2007 Phys. Lett. A 369 120

    [24]

    Abdalla M, Dean D, Theodore M, Fielding J, Nyairo E, Price G 2010 Polymer 51 1614

    [25]

    Absi J, Smith D S, Nait-Ali B, Grandjean S, Berjonnaux J 2005 J. Euro. Ceram. Soc. 25 367

    [26]

    Degiovanni A 1977 Rev Gen Therm (France) 185 420

    [27]

    Lepri S, Livi R, Politi A 2003 Phys. Rep. 377 1

    [28]

    Dhar A 2008 Adv. Phys. 57 457

    [29]

    Venerus D C, Schieber J D, Balasubramanian V, Bush K, Smoukov S 2004 Phys. Rev. Lett. 93 098301

    [30]

    Marencic A P, Adamson D H, Chaikin P M, Register R A 2010 Phys. Rev. E 81 011503

    [31]

    Meller A 2003 J Phys: Condens Matter 15 R581

    [32]

    Garcia-Gutierrez M C, Linares A, Hernandez J J, Rueda J J, Ezquerra T A, Poza P, Davies R J 2010Nano Lett. 10 1472

    [33]

    Mahanandia P, Schneider J J, Khaneft M, Stuhn B, Peixoto T P, Drossel B 2010 Phys. Chem. Chem. Phys. 12 4407

  • [1] Hou Quan-Wen, Cao Bing-Yang, Guo Zeng-Yuan. Thermal conductivity of carbon nanotube: From ballistic to diffusive transport. Acta Physica Sinica, 2009, 58(11): 7809-7814. doi: 10.7498/aps.58.7809
    [2] Huang Cong-Liang, Feng Yan-Hui, Zhang Xin-Xin, Li Jing, Wang Ge, Chou Ai-Hui. Thermal conductivity of metallic nanoparticle. Acta Physica Sinica, 2013, 62(2): 026501. doi: 10.7498/aps.62.026501
    [3] Li Jing, Feng Yan-Hui, Zhang Xin-Xin, Huang Cong-Liang, Yang Mu. Thermal conductivities of metallic nanowires with considering surface and grain boundary scattering. Acta Physica Sinica, 2013, 62(18): 186501. doi: 10.7498/aps.62.186501
    [4] Huang Cong-Liang, Feng Yan-Hui, Zhang Xin-Xin, Li Wei, Yang Mu, Li Jing, Wang Ge. Thermal conductivity measurements on PANI/SBA-15 and PPy/SBA-15. Acta Physica Sinica, 2012, 61(15): 154402. doi: 10.7498/aps.61.154402
    [5] Wu Guo-Qiang, Kong Xian-Ren, Sun Zhao-Wei, Wang Ya-Hui. Molecular dynamics simulation on the out-of plane thermal conductivity of argon crystal thin films. Acta Physica Sinica, 2006, 55(1): 1-5. doi: 10.7498/aps.55.1
    [6] Wang Jian-Li, Gu Ming, Zhang Xing, Xiong Guo-Ping, Liang Ji. A study on the thermal conductivity of multiwalled carbon nanotube/polypropylene composite. Acta Physica Sinica, 2009, 58(7): 4536-4541. doi: 10.7498/aps.58.4536
    [7] Yang Ping, Wu Yong-Sheng, Xu Hai-Feng, Xu Xian-Xin, Zhang Li-Qiang, Li Pei. Molecular dynamics simulation of thermal conductivity for the TiO2/ZnO nano-film interface. Acta Physica Sinica, 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [8] Yang Ping, Wang Xiao-Liang, Li Pei, Wang Huang, Zhang Li-Qiang, Xie Fang-Wei. The effect of doped nitrogen and vacancy on thermal conductivity of graphenenanoribbon from nonequilibrium molecular dynamics. Acta Physica Sinica, 2012, 61(7): 076501. doi: 10.7498/aps.61.076501
    [9] Li Wei, Feng Yan-Hui, Chen Yang, Zhang Xin-Xin. Research on the influences of point defects on the thermal conductivity of carbon nanotube by simulation with orthogonal array testing strategy. Acta Physica Sinica, 2012, 61(13): 136102. doi: 10.7498/aps.61.136102
    [10] Zheng Bo-Yu, Dong Hui-Long, Chen Fei-Fan. Characterization of thermal conductivity for GNR based on nonequilibrium molecular dynamics simulation combined with quantum correction. Acta Physica Sinica, 2014, 63(7): 076501. doi: 10.7498/aps.63.076501
  • Citation:
Metrics
  • Abstract views:  1770
  • PDF Downloads:  561
  • Cited By: 0
Publishing process
  • Received Date:  29 December 2010
  • Accepted Date:  26 June 2011
  • Published Online:  15 April 2012

Experimental study of thermal conductivity of polyethylene nanowire arrays fabricated by the nanoporous template wetting technique

  • 1. Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China;
  • 2. Department of Applied Chemistry, School of Science, Northwestern Polytechnical University, Xi’an 710072, China;
  • 3. Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China;
  • 4. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
Fund Project:  Project supported by the National Natural Foundation of China (Grant Nos. 50976052, 51136001), the Program for New Century Excellent Talents in University, the Chun Hui Program of State Education Ministry (Grant No. Z2009-1-71004), the Aero-Science Foundation of China (Grant No. 2009ZH53073), and the Funding from the Hong Kong Research Grants Council (Grant No.PolyU 5347/08E).

Abstract: We fabricate low-density polyethylene (LDPE) nanowire array with a diameter of 200 nm by using a nanoporous template wetting technique, and the thermal conductivity at 2080℃ is experimentally studied by a nanosecond laser flash method. The measured thermal conductivity of the fabricated nanowire array is about 2.2 W/mK at room temperature, which is about one order of magnitude higher than its bulk counterpart. The thermal conductivity is found to increase slightly with the increase of temperature. The estimated thermal conductivity of a single LDPE nanowire is as high as 5 W/mK at room temperature. The high orientation of chain of the LDPE nanowire may arise from the integrative effects of shear rate, vibrational perturbation, translocation, nanoconfinement and crystallization. Findings in this study provide a useful strategy for enhancing the intrinsic thermal properties of polymer nanostructures.

Reference (33)

Catalog

    /

    返回文章
    返回