Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Oxygen adsorption on Nb(110) surface by first-principles calculation

Fang Cai-Hong Shang Jia-Xiang Liu Zeng-Hui

Oxygen adsorption on Nb(110) surface by first-principles calculation

Fang Cai-Hong, Shang Jia-Xiang, Liu Zeng-Hui
PDF
Get Citation
  • The adsorption of atomic oxygen on the Nb (110) surface is systematically investigated through the first-principles method for oxygen coverage ranging from 0.25 to 1 monolayer (ML).It is found that the hollow site is the most energetically favorable for the whole coverage range considered and that the long-bridge site takes the second place.The work function increases almost linearly with the increase of oxygen coverage for the long-bridge site adsorption, whereas for the hollow site adsorption the work function decreases when the coverage is 0.25 ML or 0.5 ML and increases when the coverage is 0.75 ML or 1 ML.Using the planar averaged charge density and the dipole moment change we can explain the complicated change of work function induced by atomic oxygen adsorption.In addition, the interaction between O and Nb is analyzed by the surface atomic structure and electronic density of states.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51071011).
    [1]

    Halbritter J 1987 Appl. Phys. A 43 1

    [2]

    Cao W H, Yu H F, Tian Y, Yu H W, Ren Y F, Chen G H, Zhao S P 2009 Chin. Phys. B 18 5044

    [3]

    Grundner M, Halbritter J 1980 J. Appl. Phys. 51 397

    [4]

    Chen Y, Shang J X, Zhang Y 2007 Phys. Rev. B 76 184204

    [5]

    Chen Y, Shang J X, Zhang Y 2007 J. Phys. Condens. Matters. 18 016215

    [6]

    Shang J X, Guan K, Wang F H 2010 J. Phys. Condens. Matters. 22 085004

    [7]

    Liu S Y, Shang J X, Wang F H, Liu S Y, Zhang Y, Xu H B 2009 Phys. Rev. B 80 085414

    [8]

    Geng J, Tsakiropoulos P 2007 Intermetallics 15 382

    [9]

    Geng J, Tsakiropoulos P, Shao G 2006 Mater. Sci. Eng. A 441 26

    [10]

    Liu G W 2010 Acta Phys. Sin. 59 0499 (in Chinese) [刘贵文 2010 物理学报 59 0499]

    [11]

    Liu G W, Yang J 2010 Acta Phys. Sin. 59 4939 (in Chinese) [刘贵文, 杨杰 2006 物理学报 59 4939]

    [12]

    Grundner M, Halbritter J 1984 Surf. Sci. 136 144

    [13]

    Arfaoui I, Cousty J, Guillot C 2004 Surf. Sci. 557 119

    [14]

    Arfaoui I, Cousty J, Safa H 2002 Phys. Rev. B 65 115413

    [15]

    Matsui F, Fujikado M, Daimon H, Sell B, Fadley C, Kobayashi A 2006 Czech. J. Phys. 56 61

    [16]

    Razinkin A, Shalaeva E, Kuznetsov M 2008 Bull. Russ. Acad. Sci. Phys. 72 1318

    [17]

    Sürgers C, Schok M, Loneysen H 2001 Surf. Sci. 471 209

    [18]

    Arfaoui I, Guillot C, Cousty J, Antoine C 2002 J. Appl. Phys. 91 9319

    [19]

    Pantel R, Bujor M, Bardolle J 1977 Surf. Sci. 62 589

    [20]

    Chocianowski P 1990 Vacuum 41 726

    [21]

    Lindau I, Spicer W E 1974 J. Appl. Phys. 45 3720

    [22]

    Franchy R, Bartke T U, Gassmann P 1996 Surf. Sci. 366 60

    [23]

    Wen M, An B, Fukuyama S, Yokogawa K 2009 Surf. Sci. 603 216

    [24]

    Kilimis D A, Lekka Ch E 2007 Mater. Sci. Eng. B 144 5

    [25]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169

    [26]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [27]

    Bengtsson L 1999 Phys. Rev. B 59 12301

    [28]

    Shein K, Shein I, Medvedeva N, Shalaeva E, Kuznetsov M, Ivanovskii A 2006 Phys. Met. Metallogr. 102 604

    [29]

    James W E, Rudolph S, Herrick L J 1951 J. Appl. Phys. 22 424

    [30]

    Leung T C, Kao C L, Su W S, Feng Y J, Chan C T 2003 Phys. Rev. B 68 195408

    [31]

    Reuter K, Scheffler M 2004 J. Phys. Chem. B 108 14477

    [32]

    Stampfl C, Scheffler M 1996 Phys. Rev. B 54 2868

    [33]

    Ganduglia-Pirovano M V, Scheffler M 1999 Phys. Rev. B 59 15533

    [34]

    Kiejna A, Lundqvist B I 2001 Phys. Rev. B 63 085405

    [35]

    Zeng Z H, Deng H Q, Li W X, 2006 Acta Phys. Sin. 55 3157 (in Chinese) [曾振华, 邓辉球, 李微雪, 胡望宇 2006 物理学报 55 3157]

    [36]

    Xu G G, Wu Q Y, Zhang J M, Chen Z G, Huang Z G 2009 Acta Phys. Sin. 58 1924 (in Chinese) [许桂贵, 吴青云, 张健敏, 陈志高, 黄志高 2009 {物理学报 58 1924]

    [37]

    Michaelides A, Hu P, Lee M H, Alavi A, King D A 2003 Phys. Rev. Lett. 90 246103

    [38]

    Hammer B, N?rskov J K, Bruce C, Gates H K 2000 Adv. Catal. 45 71

  • [1]

    Halbritter J 1987 Appl. Phys. A 43 1

    [2]

    Cao W H, Yu H F, Tian Y, Yu H W, Ren Y F, Chen G H, Zhao S P 2009 Chin. Phys. B 18 5044

    [3]

    Grundner M, Halbritter J 1980 J. Appl. Phys. 51 397

    [4]

    Chen Y, Shang J X, Zhang Y 2007 Phys. Rev. B 76 184204

    [5]

    Chen Y, Shang J X, Zhang Y 2007 J. Phys. Condens. Matters. 18 016215

    [6]

    Shang J X, Guan K, Wang F H 2010 J. Phys. Condens. Matters. 22 085004

    [7]

    Liu S Y, Shang J X, Wang F H, Liu S Y, Zhang Y, Xu H B 2009 Phys. Rev. B 80 085414

    [8]

    Geng J, Tsakiropoulos P 2007 Intermetallics 15 382

    [9]

    Geng J, Tsakiropoulos P, Shao G 2006 Mater. Sci. Eng. A 441 26

    [10]

    Liu G W 2010 Acta Phys. Sin. 59 0499 (in Chinese) [刘贵文 2010 物理学报 59 0499]

    [11]

    Liu G W, Yang J 2010 Acta Phys. Sin. 59 4939 (in Chinese) [刘贵文, 杨杰 2006 物理学报 59 4939]

    [12]

    Grundner M, Halbritter J 1984 Surf. Sci. 136 144

    [13]

    Arfaoui I, Cousty J, Guillot C 2004 Surf. Sci. 557 119

    [14]

    Arfaoui I, Cousty J, Safa H 2002 Phys. Rev. B 65 115413

    [15]

    Matsui F, Fujikado M, Daimon H, Sell B, Fadley C, Kobayashi A 2006 Czech. J. Phys. 56 61

    [16]

    Razinkin A, Shalaeva E, Kuznetsov M 2008 Bull. Russ. Acad. Sci. Phys. 72 1318

    [17]

    Sürgers C, Schok M, Loneysen H 2001 Surf. Sci. 471 209

    [18]

    Arfaoui I, Guillot C, Cousty J, Antoine C 2002 J. Appl. Phys. 91 9319

    [19]

    Pantel R, Bujor M, Bardolle J 1977 Surf. Sci. 62 589

    [20]

    Chocianowski P 1990 Vacuum 41 726

    [21]

    Lindau I, Spicer W E 1974 J. Appl. Phys. 45 3720

    [22]

    Franchy R, Bartke T U, Gassmann P 1996 Surf. Sci. 366 60

    [23]

    Wen M, An B, Fukuyama S, Yokogawa K 2009 Surf. Sci. 603 216

    [24]

    Kilimis D A, Lekka Ch E 2007 Mater. Sci. Eng. B 144 5

    [25]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169

    [26]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [27]

    Bengtsson L 1999 Phys. Rev. B 59 12301

    [28]

    Shein K, Shein I, Medvedeva N, Shalaeva E, Kuznetsov M, Ivanovskii A 2006 Phys. Met. Metallogr. 102 604

    [29]

    James W E, Rudolph S, Herrick L J 1951 J. Appl. Phys. 22 424

    [30]

    Leung T C, Kao C L, Su W S, Feng Y J, Chan C T 2003 Phys. Rev. B 68 195408

    [31]

    Reuter K, Scheffler M 2004 J. Phys. Chem. B 108 14477

    [32]

    Stampfl C, Scheffler M 1996 Phys. Rev. B 54 2868

    [33]

    Ganduglia-Pirovano M V, Scheffler M 1999 Phys. Rev. B 59 15533

    [34]

    Kiejna A, Lundqvist B I 2001 Phys. Rev. B 63 085405

    [35]

    Zeng Z H, Deng H Q, Li W X, 2006 Acta Phys. Sin. 55 3157 (in Chinese) [曾振华, 邓辉球, 李微雪, 胡望宇 2006 物理学报 55 3157]

    [36]

    Xu G G, Wu Q Y, Zhang J M, Chen Z G, Huang Z G 2009 Acta Phys. Sin. 58 1924 (in Chinese) [许桂贵, 吴青云, 张健敏, 陈志高, 黄志高 2009 {物理学报 58 1924]

    [37]

    Michaelides A, Hu P, Lee M H, Alavi A, King D A 2003 Phys. Rev. Lett. 90 246103

    [38]

    Hammer B, N?rskov J K, Bruce C, Gates H K 2000 Adv. Catal. 45 71

  • [1] Xu Gui-Gui, Wu Qing-Yun, Zhang Jian-Min, Chen Zhi-Gao, Huang Zhi-Gao. First-principles study of the adsorption energy and work function of oxygen adsorption on Ni(111) surface. Acta Physica Sinica, 2009, 58(3): 1924-1930. doi: 10.7498/aps.58.1924
    [2] Wang Mang-Mang, Ning Hua, Tao Xiang-Ming, Tan Ming-Qiu. Density-functional theory investigation of atomic geometryand oxygen adsorption of Au(110) surface. Acta Physica Sinica, 2011, 60(4): 047301. doi: 10.7498/aps.60.047301
    [3] Liu Kun, Wang Fu-He, Shang Jia-Xiang. First-principles study on the adsorption of oxygen at NiTi (110) surface. Acta Physica Sinica, 2017, 66(21): 216801. doi: 10.7498/aps.66.216801
    [4] Du Yu-Jie, Chang Ben-Kang, Zhang Jun-Ju, Li Biao, Wang Xiao-Hui. First-principles study of the electronic structure and optical properties of GaN(0001) surface. Acta Physica Sinica, 2012, 61(6): 067101. doi: 10.7498/aps.61.067101
    [5] Zhang Yang, Huang Yan, Chen Xiao-Shuang, Lu Wei. The study of oxygen and sulfur adsorption on the InSb (110) surface, using first-principle energy calculations. Acta Physica Sinica, 2013, 62(20): 206102. doi: 10.7498/aps.62.206102
    [6] Song Hong-Zhou, Zhang Ping, Zhao Xian-Geng. First-principles calculation of atomic hydrogen adsorption on Be(1010) thin films. Acta Physica Sinica, 2006, 55(11): 6025-6031. doi: 10.7498/aps.55.6025
    [7] Li Qi, Fan Guang-Han, Xiong Wei-Ping, Zhang Yong. First-principles calculations of ZnO polar surfaces and N adsorption mechanism. Acta Physica Sinica, 2010, 59(6): 4170-4177. doi: 10.7498/aps.59.4170
    [8] Song Hong-Zhou, Zhang Ping, Zhao Xian-Geng. First-principles calculation of Be(0001) thin films: quantum size effect and adsorption of atomic hydrogen. Acta Physica Sinica, 2007, 56(1): 465-473. doi: 10.7498/aps.56.465
    [9] Liu Feng-Bin, Chen Wen-Bin, Cui Yan, Qu Min, Cao Lei-Gang, Yang Yue. A first principles study on the active adsorbates on the hydrogenated diamond surface. Acta Physica Sinica, 2016, 65(23): 236802. doi: 10.7498/aps.65.236802
    [10] Jiang Ping-Guo, Wang Zheng-Bing, Yan Yong-Bo. First-principles study on adsorption mechanism of hydrogen on tungsten trioxide surface. Acta Physica Sinica, 2017, 66(8): 086801. doi: 10.7498/aps.66.086801
  • Citation:
Metrics
  • Abstract views:  1463
  • PDF Downloads:  636
  • Cited By: 0
Publishing process
  • Received Date:  22 April 2011
  • Accepted Date:  21 June 2011
  • Published Online:  15 April 2012

Oxygen adsorption on Nb(110) surface by first-principles calculation

  • 1. School of Materials Science and Engineering, Beihang University, Beijing 100191, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 51071011).

Abstract: The adsorption of atomic oxygen on the Nb (110) surface is systematically investigated through the first-principles method for oxygen coverage ranging from 0.25 to 1 monolayer (ML).It is found that the hollow site is the most energetically favorable for the whole coverage range considered and that the long-bridge site takes the second place.The work function increases almost linearly with the increase of oxygen coverage for the long-bridge site adsorption, whereas for the hollow site adsorption the work function decreases when the coverage is 0.25 ML or 0.5 ML and increases when the coverage is 0.75 ML or 1 ML.Using the planar averaged charge density and the dipole moment change we can explain the complicated change of work function induced by atomic oxygen adsorption.In addition, the interaction between O and Nb is analyzed by the surface atomic structure and electronic density of states.

Reference (38)

Catalog

    /

    返回文章
    返回