Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study of structural stability and electronic properties of rhombohedral and tetragonal PbZr0.5Ti0.5O3

Shao Qing-Sheng Liu Shi-Yu Zhao Hui Yu Da-Shu Cao Mao-Sheng

First-principles study of structural stability and electronic properties of rhombohedral and tetragonal PbZr0.5Ti0.5O3

Shao Qing-Sheng, Liu Shi-Yu, Zhao Hui, Yu Da-Shu, Cao Mao-Sheng
PDF
Get Citation
  • The energetic stability, the structural and the electronic properties of rhombohedral and tetragonal PbZr0.5Ti0.5O3 are systematically investigated by the first-principles plane-wave pseudopotential and the virtual crystal approximation (VCA) based on the density functional theory, within the frameworks of local density approximation (LDA) and generalized gradient approximation (GGA). Our calculation results show that the total energy of the rhombohedral phase is lower than that of the tetragonal phase, which suggests that the rhombohedral structure is more energetically stable than the tetragonal one. Furthermore, the structural parameters calculated in the GGA are well consistent with experimental values. From the analysis of electronic structure, we can find the strong hybridization between Ti/Zr d and O 2p both in two phases. Furthermore the hybridization between Ti-O is stronger than that between Zr-O; there also exists the hybridization between Pb s, d and O 2s, 2p. Moreover, the hybridization between Pb 5d and O 2s in the rhombohedral phase is stronger than that in the tetragonal phase, which indicates that the rhombohedral phase is more stable than the tetragonal phase.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11104203, 51132002, 51072024, 50972014), the Natural Science Foundation of Liaoning Province (Grant No. 20082192), and the Foundation of introduction of talent of Tianjin Normal University (Grant No. 5RL100).
    [1]

    Scott J F 1998 Ferroelectrics Review 1 1

    [2]

    Uchino K 1996 Piezoelectric Actuators and Ultrasonic Motors (Kluwer Academic Publishers, Boston)

    [3]

    Cohen R E 1992 Nature (London) 358 136

    [4]

    Al-Zein A, Fraysse G, Rouquete J, Papet P, Haines J, Hehlen B, Levelut C, Aquilanti G, Joly Y 2010 Phys. Rev. B 81 174110

    [5]

    Yokota H, Zhang N, Taylor A E, Thomas P A, Glazer A M 2009 Phys. Rev. B 80 104109

    [6]

    Schierholz R, Fuess H 2008 Phys. Rev. B 78 024118

    [7]

    Jaffe B, Cook W R, Jaffe H 1971 Piezoelectric Ceramics (Acadermic Press London)

    [8]

    Zhang D Q, Liu H T, Cao M S 2006 Journal of Functional Material 37 1213(in Chinese) [张德庆, 刘海涛, 曹茂盛 2006 功能材料 37 1213]

    [9]

    Wang D W, Jin H B, Yuan J,Wen B L, Zhao Q L, Zhang D Q, Cao M S 2010 Chin. Phys. Lett. 27 047701

    [10]

    Wang D W, Zhang D Q, Yuan J, Zhao Q L, Liu H M, Wang Z Y, Cao M S 2009 Chin. Phys. B 18 2596

    [11]

    Zhang D Q, Wang D W, Yuan J, Zhao Q L, Wang Z Y, Cao M S 2008 Chin. Phys. Lett. 25 4410

    [12]

    Duan Z X, Yuan J, Zhao Q L, Liu H M, Lin H B, Zhang W T, Cao M S 2008 Chin. Phys. Lett. 25 1472

    [13]

    Liu H M, Zhao Q L, Cao M S, Yuan J, Duan Z X, Qiu C J 2008 Chin. Phys. Lett. 25 4128

    [14]

    Lin H B, Cao M S, Yuan J,Wang D W, Zhao Q L,Wang F C 2008 Chin. Phys. B 17 4323

    [15]

    Meng X J, Cheng J G, Li B, Tang J, Ye H J, Guo S L, Zhu J H 2000 Acta Phys. Sin. 49 811(in Chinese) [孟祥建, 程建功, 李标, 唐军, 叶红娟, 郭少令, 褚君浩 2000 物理学报 49 811]

    [16]

    Segall M D, Lindan P L D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717

    [17]

    Milman V, Winkler B, White J A, Pickard C J, Payne M C, Akhmatskaya E V, Nobes R H 2000 Int. J. Quantum. Chem. 77 895

    [18]

    Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566

    [19]

    Perdew J P, Zunger A 1981 Phys. Rev. B 23 5048

    [20]

    Perdew J P, Wang Y 1986 Phys. Rev. B 33 8800

    [21]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [22]

    Nordheim L 1931 Ann. Phys. 9 607

    [23]

    Jirak Z, Kala T 1988 Ferroelectrics 82 79

    [24]

    Frantti J, Lappalainen J, Eriksson S, Lantto V, Nishio S, Kakihana M, Ivanov S, Rundlöf H 2000 Jpn. J. Appl. Phys. I 39 5697

    [25]

    Yoshihiro K, Shinobu A, Akikatsu S, Jimpei H, Eiji N, Masaki T, Makoto S 2001 Phys. Rev. Lett. 87 217061

  • [1]

    Scott J F 1998 Ferroelectrics Review 1 1

    [2]

    Uchino K 1996 Piezoelectric Actuators and Ultrasonic Motors (Kluwer Academic Publishers, Boston)

    [3]

    Cohen R E 1992 Nature (London) 358 136

    [4]

    Al-Zein A, Fraysse G, Rouquete J, Papet P, Haines J, Hehlen B, Levelut C, Aquilanti G, Joly Y 2010 Phys. Rev. B 81 174110

    [5]

    Yokota H, Zhang N, Taylor A E, Thomas P A, Glazer A M 2009 Phys. Rev. B 80 104109

    [6]

    Schierholz R, Fuess H 2008 Phys. Rev. B 78 024118

    [7]

    Jaffe B, Cook W R, Jaffe H 1971 Piezoelectric Ceramics (Acadermic Press London)

    [8]

    Zhang D Q, Liu H T, Cao M S 2006 Journal of Functional Material 37 1213(in Chinese) [张德庆, 刘海涛, 曹茂盛 2006 功能材料 37 1213]

    [9]

    Wang D W, Jin H B, Yuan J,Wen B L, Zhao Q L, Zhang D Q, Cao M S 2010 Chin. Phys. Lett. 27 047701

    [10]

    Wang D W, Zhang D Q, Yuan J, Zhao Q L, Liu H M, Wang Z Y, Cao M S 2009 Chin. Phys. B 18 2596

    [11]

    Zhang D Q, Wang D W, Yuan J, Zhao Q L, Wang Z Y, Cao M S 2008 Chin. Phys. Lett. 25 4410

    [12]

    Duan Z X, Yuan J, Zhao Q L, Liu H M, Lin H B, Zhang W T, Cao M S 2008 Chin. Phys. Lett. 25 1472

    [13]

    Liu H M, Zhao Q L, Cao M S, Yuan J, Duan Z X, Qiu C J 2008 Chin. Phys. Lett. 25 4128

    [14]

    Lin H B, Cao M S, Yuan J,Wang D W, Zhao Q L,Wang F C 2008 Chin. Phys. B 17 4323

    [15]

    Meng X J, Cheng J G, Li B, Tang J, Ye H J, Guo S L, Zhu J H 2000 Acta Phys. Sin. 49 811(in Chinese) [孟祥建, 程建功, 李标, 唐军, 叶红娟, 郭少令, 褚君浩 2000 物理学报 49 811]

    [16]

    Segall M D, Lindan P L D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717

    [17]

    Milman V, Winkler B, White J A, Pickard C J, Payne M C, Akhmatskaya E V, Nobes R H 2000 Int. J. Quantum. Chem. 77 895

    [18]

    Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566

    [19]

    Perdew J P, Zunger A 1981 Phys. Rev. B 23 5048

    [20]

    Perdew J P, Wang Y 1986 Phys. Rev. B 33 8800

    [21]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [22]

    Nordheim L 1931 Ann. Phys. 9 607

    [23]

    Jirak Z, Kala T 1988 Ferroelectrics 82 79

    [24]

    Frantti J, Lappalainen J, Eriksson S, Lantto V, Nishio S, Kakihana M, Ivanov S, Rundlöf H 2000 Jpn. J. Appl. Phys. I 39 5697

    [25]

    Yoshihiro K, Shinobu A, Akikatsu S, Jimpei H, Eiji N, Masaki T, Makoto S 2001 Phys. Rev. Lett. 87 217061

  • [1] Liu Shi-Yu, Yu Da-Shu, Lü Yue-Kai, Li De-Jun, Cao Mao-Sheng. First-principles study of structural stability and electronic properties of tetragonal and orthorhombic as well as monoclinic K0.5Na0.5NbO3. Acta Physica Sinica, 2013, 62(17): 177102. doi: 10.7498/aps.62.177102
    [2] Zhong Zhi-Cheng, Zhang Duan-Ming, Yan Wen-Sheng, Yang Feng-Xia, Zheng Ke-Yu, Li Zhi-Hua. Study on the relation between the dielectric properties and lattice distortions in PZT ferroelectric tetragonal phase region. Acta Physica Sinica, 2004, 53(5): 1316-1320. doi: 10.7498/aps.53.1316
    [3] Ye Zhen-Cheng, Cai Jun, Zhang Shu-Ling, Liu Hong-Lai, Hu Ying. Studies on the density profiles of square-well chain fluid confined in a slit pore by density functional theory. Acta Physica Sinica, 2005, 54(9): 4044-4052. doi: 10.7498/aps.54.4044
    [4] Yu Ben-Hai, Chen Dong. Phase transition, electronic and optical properties of Si3N4 new phases at high pressure with density functional theory. Acta Physica Sinica, 2014, 63(4): 047101. doi: 10.7498/aps.63.047101
    [5] Zhao Xiao-Ying, Liu Shi-Jian, Chu Jun-Hao, Dai Ning, Hu Gu-Jin. Ferroelectric and optical properties of Pb(ZrxTi1-x)O3 bilayers. Acta Physica Sinica, 2008, 57(9): 5968-5972. doi: 10.7498/aps.57.5968
    [6] Lu Tao, Wang Jin, Fu Xu, Xu Biao, Ye Fei-Hong, Mao Jin-Bin, Lu Yun-Qing, Xu Ji. Theoretical calculation of the birefringence of poly-methyl methacrylate by using the density functional theory and molecular dynamics method. Acta Physica Sinica, 2016, 65(21): 210301. doi: 10.7498/aps.65.210301
    [7] Zhu Hong-Qiang, Feng Qing. Microscopic characteristics mechanism of optical gas sensing material rutile titanium dioxide (110) surface adsorption of CO molecules. Acta Physica Sinica, 2014, 63(13): 133101. doi: 10.7498/aps.63.133101
    [8] Ma Li-Sha, Zhang Qian-Cheng, Cheng Lin. First-principles calculations on electronic structures of Zn adsorbed on the anatase TiO2 (101) surface having oxygen vacancy and hydroxyl groups. Acta Physica Sinica, 2013, 62(18): 187101. doi: 10.7498/aps.62.187101
    [9] Yuan Ye, Tian Bo-Bo, Duan Chun-Gang. Theoretical study on magnetoelectric effect in multiferroic tetragonal BiMnO3. Acta Physica Sinica, 2018, 67(15): 157511. doi: 10.7498/aps.67.20180946
    [10] Zhu Zhen-Ye. Piezoelectric effect mechanism in lead-free tetragonal perovskite short-period superlattices. Acta Physica Sinica, 2018, 67(7): 077701. doi: 10.7498/aps.67.20172710
  • Citation:
Metrics
  • Abstract views:  1672
  • PDF Downloads:  421
  • Cited By: 0
Publishing process
  • Received Date:  22 January 2011
  • Accepted Date:  29 March 2011
  • Published Online:  15 April 2012

First-principles study of structural stability and electronic properties of rhombohedral and tetragonal PbZr0.5Ti0.5O3

  • 1. College of Physics and Electronic Information, Tianjin Normal University, Tianjin 300387, China;
  • 2. College of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 11104203, 51132002, 51072024, 50972014), the Natural Science Foundation of Liaoning Province (Grant No. 20082192), and the Foundation of introduction of talent of Tianjin Normal University (Grant No. 5RL100).

Abstract: The energetic stability, the structural and the electronic properties of rhombohedral and tetragonal PbZr0.5Ti0.5O3 are systematically investigated by the first-principles plane-wave pseudopotential and the virtual crystal approximation (VCA) based on the density functional theory, within the frameworks of local density approximation (LDA) and generalized gradient approximation (GGA). Our calculation results show that the total energy of the rhombohedral phase is lower than that of the tetragonal phase, which suggests that the rhombohedral structure is more energetically stable than the tetragonal one. Furthermore, the structural parameters calculated in the GGA are well consistent with experimental values. From the analysis of electronic structure, we can find the strong hybridization between Ti/Zr d and O 2p both in two phases. Furthermore the hybridization between Ti-O is stronger than that between Zr-O; there also exists the hybridization between Pb s, d and O 2s, 2p. Moreover, the hybridization between Pb 5d and O 2s in the rhombohedral phase is stronger than that in the tetragonal phase, which indicates that the rhombohedral phase is more stable than the tetragonal phase.

Reference (25)

Catalog

    /

    返回文章
    返回