Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First principles investigation of interaction between interstitials H atom and Nb metal

Rao Jian-Ping Ouyang Chu-Ying Lei Min-Sheng Jiang Feng-Yi

First principles investigation of interaction between interstitials H atom and Nb metal

Rao Jian-Ping, Ouyang Chu-Ying, Lei Min-Sheng, Jiang Feng-Yi
PDF
Get Citation
  • Understanding of the interaction between Nb and interstitial H is helpful for using Nb metallic membrane as H2 purification selective membrane. By first-principles calculations, the site occupation of H in the interstitials of the bcc Nb lattice is studied, and the relation between the site energy and the size of the interstitial is discussed. The interaction between interstitial H and Nb lattice is analyzed and the influence of the electronic structure on the interaction is discussed. The results show that in addition to the influence of the interstitial size on the H solution energy, strong bonding interaction between H-1s and Nb-3d is another important reason for the low H solution energy in Nb lattice. The H diffusion coefficient in Nb metal is evaluated and results show that it is approximately 7.8× 10-9 m2/s at 500 ℃, Which is in agreement with experimental observation.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11064004), and the Natural Science Foundation of Jiangxi Province (Grant No. 2010GZW0028).
    [1]

    Muradov N Z, Veziroglu T N 2005 Int. J. Hydrogen Energy 30 225

    [2]

    Ockwig N W, Nenoff T M 2007 Chem. Rev. 107 4078

    [3]

    Phair J W, Donelson R 2006 Ind. Eng. Chem. Res. 45 5657

    [4]

    Schober H R, Stoneham A M 1988 Phys. Rev. Lett. 60 2307

    [5]

    Lu G, Kaxiras E 2005 Phys. Rev. Lett. 94 155501

    [6]

    Liu Y L, Zhang Y, Zhou H B, Lu G H, Liu F, Luo G N 2009 Phys. Rev. B 79 172103

    [7]

    Sundell P G, Wahnström G 2004 Phys. Rev. Lett. 92 155901

    [8]

    Sundell P G, Wahnström G 2004 Phys. Rev. B 70 224301

    [9]

    Schober H R, Stoneham A M 1988 Phys. Rev. Lett. 60 2307

    [10]

    Blomqvist A, Pálsson G K, Araújo C M, Ahuja R, Hjörvarsson B 2010 Phys. Rev. Lett. 105 185901

    [11]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169

    [12]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [13]

    Wang Y, Perdew J P 1991 Phys. Rev. B 44 13298

    [14]

    Monkhorst H J, Pack J 1976 Phys. Rev. B 13 5188

    [15]

    Westlake D G, Miller J F 1979 J. Less-Common Met. 65 139

    [16]

    Yand Z J 1966 Acta Phys. Sin. 22 281 (in Chinese) [杨正举 1966 物理学报 22 281]

    [17]

    Sheppard D, Terrell R, Henkelman G 2008 J. Chem. Phys. 128 134106

    [18]

    Vineyard G H 1957 J. Phys. Chem. Solids 3 121

    [19]

    Kutner R 1981 Phys. Lett. A 81 239

    [20]

    Zhang G X, Yukawa H,Watanabe N, Saito Y, Fukaya H,Morinaga M, Nambu T,Matsumoto Y 2008 Int. J. Hydrogen Energy 33 4419

  • [1]

    Muradov N Z, Veziroglu T N 2005 Int. J. Hydrogen Energy 30 225

    [2]

    Ockwig N W, Nenoff T M 2007 Chem. Rev. 107 4078

    [3]

    Phair J W, Donelson R 2006 Ind. Eng. Chem. Res. 45 5657

    [4]

    Schober H R, Stoneham A M 1988 Phys. Rev. Lett. 60 2307

    [5]

    Lu G, Kaxiras E 2005 Phys. Rev. Lett. 94 155501

    [6]

    Liu Y L, Zhang Y, Zhou H B, Lu G H, Liu F, Luo G N 2009 Phys. Rev. B 79 172103

    [7]

    Sundell P G, Wahnström G 2004 Phys. Rev. Lett. 92 155901

    [8]

    Sundell P G, Wahnström G 2004 Phys. Rev. B 70 224301

    [9]

    Schober H R, Stoneham A M 1988 Phys. Rev. Lett. 60 2307

    [10]

    Blomqvist A, Pálsson G K, Araújo C M, Ahuja R, Hjörvarsson B 2010 Phys. Rev. Lett. 105 185901

    [11]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169

    [12]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [13]

    Wang Y, Perdew J P 1991 Phys. Rev. B 44 13298

    [14]

    Monkhorst H J, Pack J 1976 Phys. Rev. B 13 5188

    [15]

    Westlake D G, Miller J F 1979 J. Less-Common Met. 65 139

    [16]

    Yand Z J 1966 Acta Phys. Sin. 22 281 (in Chinese) [杨正举 1966 物理学报 22 281]

    [17]

    Sheppard D, Terrell R, Henkelman G 2008 J. Chem. Phys. 128 134106

    [18]

    Vineyard G H 1957 J. Phys. Chem. Solids 3 121

    [19]

    Kutner R 1981 Phys. Lett. A 81 239

    [20]

    Zhang G X, Yukawa H,Watanabe N, Saito Y, Fukaya H,Morinaga M, Nambu T,Matsumoto Y 2008 Int. J. Hydrogen Energy 33 4419

  • [1] Zhou Jing-Jing, Chen Yun-Gui, Wu Chao-Ling, Zheng Xin, Fang Yu-Chao, Gao Tao. First-pricinples design on atomic scale for new lightweight hydrogen storage materials. Acta Physica Sinica, 2009, 58(7): 4853-4861. doi: 10.7498/aps.58.4853
    [2] Liang Xiao-Rui, Zhao Bo, Zhou Zhi-Hua. Ab initio study on the second-order nonlinear optical properties of some coumarin derivatives. Acta Physica Sinica, 2006, 55(2): 723-728. doi: 10.7498/aps.55.723
    [3] Ji Guang-Fu, Zhao Feng, Meng Chuan-Min, Song Zhen-Fei, Cui Hong-Lingi, Li Xiao-Feng, Zhang Yan-Li. Ab initio simulation on thermodynamic equation of state of fcc aluminum under high temperature and pressure. Acta Physica Sinica, 2009, 58(6): 4103-4108. doi: 10.7498/aps.58.4103
    [4] Han Xiao-Qin, Xiao Xia-Jie, Liu Yu-Fang. The ab initio potential energy curve of HNO(1A’). Acta Physica Sinica, 2013, 62(19): 193101. doi: 10.7498/aps.62.193101
    [5] Han Xiao-Qin. The ab initio and potential energy curve of SiF2(1A1). Acta Physica Sinica, 2014, 63(23): 233101. doi: 10.7498/aps.63.233101
    [6] Yu Jun-Hua, Yan Bing, Pan Shou-Fu, Wang Zhi-Gang. Dissociation of sulfur trimer S3:the nonadiabatic process. Acta Physica Sinica, 2006, 55(4): 1736-1739. doi: 10.7498/aps.55.1736
    [7] Ouyang Chu-Ying, Hu Guo-Jin. Influence of surface effect to the performance of LiMn2O4 cathode material for lithium ion batteries. Acta Physica Sinica, 2010, 59(8): 5863-5869. doi: 10.7498/aps.59.5863
    [8] Han Xiao-Qin, Xiao Xia-Jie, Liu Yu-Fang. The ab initio and potential energy curve of OH, OCI and HOCI(1A'). Acta Physica Sinica, 2012, 61(16): 163101. doi: 10.7498/aps.61.163101
    [9] HOU CHUN-FENG, JIANG YONG-YUAN, SUN XIU-DONG, SUN WAN-JUN. UNIVERSAL FORMULA FOR CALCULATING THE MATRIX ELEMENT OF RADIAL OPERATOR OF RELATIVISTIC HYDROGEN ATOM. Acta Physica Sinica, 1999, 48(9): 1587-1592. doi: 10.7498/aps.48.1587
    [10] FENG WEI-GUO, SUN XIN, CHIA-WEI WOO. THEORY OF HYDROGEN CHEMISORPTION ON METAL SURFACES. Acta Physica Sinica, 1988, 37(8): 1298-1306. doi: 10.7498/aps.37.1298
  • Citation:
Metrics
  • Abstract views:  1309
  • PDF Downloads:  715
  • Cited By: 0
Publishing process
  • Received Date:  11 May 2011
  • Accepted Date:  16 June 2011
  • Published Online:  15 April 2012

First principles investigation of interaction between interstitials H atom and Nb metal

  • 1. Institute of Materials Sciences and Engineering, Nanchang University, Nanchang 330029, China;
  • 2. Department of Physics, Jiangxi Normal University, Nanchang 330022, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 11064004), and the Natural Science Foundation of Jiangxi Province (Grant No. 2010GZW0028).

Abstract: Understanding of the interaction between Nb and interstitial H is helpful for using Nb metallic membrane as H2 purification selective membrane. By first-principles calculations, the site occupation of H in the interstitials of the bcc Nb lattice is studied, and the relation between the site energy and the size of the interstitial is discussed. The interaction between interstitial H and Nb lattice is analyzed and the influence of the electronic structure on the interaction is discussed. The results show that in addition to the influence of the interstitial size on the H solution energy, strong bonding interaction between H-1s and Nb-3d is another important reason for the low H solution energy in Nb lattice. The H diffusion coefficient in Nb metal is evaluated and results show that it is approximately 7.8× 10-9 m2/s at 500 ℃, Which is in agreement with experimental observation.

Reference (20)

Catalog

    /

    返回文章
    返回