Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theory research of negative dynamic conductivity in electrically pumped multiple graphene layer structures with split gates

Zhang Yu-Ping Zhang Hong-Yan Yin Yi-Heng Liu Ling-Yu Zhang Xiao Gao Ying Zhang Hui-Yun

Theory research of negative dynamic conductivity in electrically pumped multiple graphene layer structures with split gates

Zhang Yu-Ping, Zhang Hong-Yan, Yin Yi-Heng, Liu Ling-Yu, Zhang Xiao, Gao Ying, Zhang Hui-Yun
PDF
Get Citation
  • The negative dynamic conductivity of graphene in THz range makes it to be a promise medium in THz radiation and amplification. This paper proposes electrically pumped multiple graphene layer structures with split gates, sets up the theory model of electrically induced n-i-p junction, calculates the ac conductivity associated with the interband and intraband transitions under the conditions of population inversion, discusses the bias voltage, gate voltage, number of graphene layers and the momentum relaxation time dependences of ac conductivity. It is shown that the real part of dynamic conductivity within terahertz range can be negative in certain conditions, namely, interband radiation is greater than the intraband absorption, which demonstrates the feasibility of taking electrically pumped multiple graphene layer structures with split gates as an active medium in radiating terahertz coherent source.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61001018), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2011FM009), the Research Fund of Shandong University of Science and Technology (SDUST), China (Grant No. 2010KYJQ103), the project of Shandong Province Higher Educational Science and Technology Program( Grant No. J11LG20), the Qingdao Science and Technology Program (Grant No. 11-2-4-4-(8)-jch,10-3-4-2-1-jcj), and the Shandong University of Science and Technology Foundation, China (Grant No. YCB110084).
    [1]

    Zhang Y, Tan Y W, Stormer H L, Kim P. 2005 Nature (London) 438 201

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Dubonos S V, Firsov A A 2005 Nature (London) 438 197

    [3]

    Katsnelson M I, Novoselov K S, Geim A K 2006 Nat. Phys. 2 620

    [4]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [5]

    Ryzhii V Ryzhii M, Otsuji T 2007 J. Appl. Phys. 101 083114

    [6]

    Kang C Y, Tang J, Li L M 2011 Acta Phys. Sin. 047302 (in Chinese) [康朝阳, 唐军, 李利民 2011 {物理学报 60 047302]

    [7]

    Jin Z F, Tong G P, Jiang Y J 2009 Acta Phys. Sin. 58 8537 (in Chinese) [金子飞, 童国平, 蒋永进 2009 {物理学报 58 8537]

    [8]

    Pan H Z, Xu M, Chen L 2010 Acta Phys. Sin. 59 6443 (in Chinese) [潘洪哲, 徐明, 陈丽 2010 {物理学报 59 6443]

    [9]

    Han T W, He P F 2010 Acta Phys. Sin. 59 3408 (in Chinese)

    [10]

    Ryzhii M, Ryzhii V 2007 Jpn. J. Appl. Phys. 46 L151

    [11]

    Ryzhii V, Ryzhii M, Satou A, Otsuji T, Dubinov A A, Ya Aleshkin V 2007 J. Appl. Phys. 106 0908

    [12]

    Ryzhii M, Ryzhii V, Otsuji T, Mitin V, Shur M S 2010 Phys. Rev. B 82 075419

    [13]

    Neugebauer P, Orlita M, Faugeras C, Barra A L, PotemskiM2009 Phys. Rev. Lett. 103 136403

    [14]

    Orlita M, Potemski M 2010 Semicond. Sci. Technol. 25 063001

    [15]

    Miller D L, Kubista K D, Rutter G M, Ruan M, deHeerWA, First P N, Stroscio J A 2009 Science 324 924

    [16]

    Sprinkle M, Siegel D, Hu Y, Hicks J, Tejeda A, TalebIbrahimi A, Le F`evre P, Bertran F, Vizzini S, Enriquez H, Chiang S, Soukiassian P, Berger C, de HeerWA, Lanzara A, Conrad E H 2009 Phys. Rev. Lett. 103 226803

    [17]

    Ryzhii V, Ryzhii M, Satou A, Otsuji T, Dubinov A A, Ya Aleshkin V 2009 J. Appl. Phys. 106 084507

    [18]

    Ryzhii V, Dubinov A A, Otsuji T, Mitin V, Shur M S 2010 J.Appl. Phys. 107 054505

    [19]

    Ryzhii V, Ryzhii M, Mitin V, Otsuji T 2010 J. Appl. Phys. 107 054512

    [20]

    Zheng Y, Ando T 2002 Phys. Rev. B 65 245420

    [21]

    Gusynin V P, Sharapov S G 2006 Phys. Rev. B 73 245411

    [22]

    Falkovsky L A 2006 Phys. Rev. B 75 033409

    [23]

    Falkovsky L A, Varlamov A A 2007 EPJ B 56 4

  • [1]

    Zhang Y, Tan Y W, Stormer H L, Kim P. 2005 Nature (London) 438 201

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Dubonos S V, Firsov A A 2005 Nature (London) 438 197

    [3]

    Katsnelson M I, Novoselov K S, Geim A K 2006 Nat. Phys. 2 620

    [4]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [5]

    Ryzhii V Ryzhii M, Otsuji T 2007 J. Appl. Phys. 101 083114

    [6]

    Kang C Y, Tang J, Li L M 2011 Acta Phys. Sin. 047302 (in Chinese) [康朝阳, 唐军, 李利民 2011 {物理学报 60 047302]

    [7]

    Jin Z F, Tong G P, Jiang Y J 2009 Acta Phys. Sin. 58 8537 (in Chinese) [金子飞, 童国平, 蒋永进 2009 {物理学报 58 8537]

    [8]

    Pan H Z, Xu M, Chen L 2010 Acta Phys. Sin. 59 6443 (in Chinese) [潘洪哲, 徐明, 陈丽 2010 {物理学报 59 6443]

    [9]

    Han T W, He P F 2010 Acta Phys. Sin. 59 3408 (in Chinese)

    [10]

    Ryzhii M, Ryzhii V 2007 Jpn. J. Appl. Phys. 46 L151

    [11]

    Ryzhii V, Ryzhii M, Satou A, Otsuji T, Dubinov A A, Ya Aleshkin V 2007 J. Appl. Phys. 106 0908

    [12]

    Ryzhii M, Ryzhii V, Otsuji T, Mitin V, Shur M S 2010 Phys. Rev. B 82 075419

    [13]

    Neugebauer P, Orlita M, Faugeras C, Barra A L, PotemskiM2009 Phys. Rev. Lett. 103 136403

    [14]

    Orlita M, Potemski M 2010 Semicond. Sci. Technol. 25 063001

    [15]

    Miller D L, Kubista K D, Rutter G M, Ruan M, deHeerWA, First P N, Stroscio J A 2009 Science 324 924

    [16]

    Sprinkle M, Siegel D, Hu Y, Hicks J, Tejeda A, TalebIbrahimi A, Le F`evre P, Bertran F, Vizzini S, Enriquez H, Chiang S, Soukiassian P, Berger C, de HeerWA, Lanzara A, Conrad E H 2009 Phys. Rev. Lett. 103 226803

    [17]

    Ryzhii V, Ryzhii M, Satou A, Otsuji T, Dubinov A A, Ya Aleshkin V 2009 J. Appl. Phys. 106 084507

    [18]

    Ryzhii V, Dubinov A A, Otsuji T, Mitin V, Shur M S 2010 J.Appl. Phys. 107 054505

    [19]

    Ryzhii V, Ryzhii M, Mitin V, Otsuji T 2010 J. Appl. Phys. 107 054512

    [20]

    Zheng Y, Ando T 2002 Phys. Rev. B 65 245420

    [21]

    Gusynin V P, Sharapov S G 2006 Phys. Rev. B 73 245411

    [22]

    Falkovsky L A 2006 Phys. Rev. B 75 033409

    [23]

    Falkovsky L A, Varlamov A A 2007 EPJ B 56 4

  • [1] Liu Ya-Qing, Zhang Yu-Ping, Zhang Hui-Yun, Lü Huan-Huan, Li Tong-Tong, Ren Guang-Jun. Study on the gain characteristics of terahertz surface plasma in optically pumped graphene multi-layer structures. Acta Physica Sinica, 2014, 63(7): 075201. doi: 10.7498/aps.63.075201
    [2] Chang Xu. Ripples of multilayer graphenes:a molecular dynamics study. Acta Physica Sinica, 2014, 63(8): 086102. doi: 10.7498/aps.63.086102
    [3] Zhong Kai, Yao Jian-Quan, Xu De-Gang, Zhang Hui-Yun, Wang Peng. Theoretical research on cascaded difference frequency generation of terahertz radiation. Acta Physica Sinica, 2011, 60(3): 034210. doi: 10.7498/aps.60.034210
    [4] Zhu Wei-Wei, Zhang Qiu-Ju, Zhang Yan-Hui, Jiao Yang. Motion-induced X-ray and terahertz radiation of electrons captured in laser standing wave. Acta Physica Sinica, 2015, 64(12): 124104. doi: 10.7498/aps.64.124104
    [5] Wang Wei-Min, Zhang Liang-Liang, Li Yu-Tong, Sheng Zheng-Ming, Zhang Jie. Theoretical and experimental studies on terahertz radiation from laser-driven air plasma. Acta Physica Sinica, 2018, 67(12): 124202. doi: 10.7498/aps.67.20180564
    [6] Li Xue-Feng, Liu Hong-Jun, Huang Nan, Xia Cai-Peng. Effects of gain saturation in terahertz radiation based on difference frequency generation. Acta Physica Sinica, 2009, 58(12): 8326-8331. doi: 10.7498/aps.58.8326
    [7] Zhang Kai-Yun, Du Hai-Wei, Chen Min, Sheng Zheng-Ming. Studies on the optimization of terahertz emission based on the field ionization current model. Acta Physica Sinica, 2012, 61(16): 160701. doi: 10.7498/aps.61.160701
    [8] Qi Chun-Chao, Ouyang Zheng-Biao. Comprehensive Survey for the Frontier Disciplines Latest advances in THz coherent light source pumped by 600—2000 nm waveband pumped source. Acta Physica Sinica, 2011, 60(9): 090704. doi: 10.7498/aps.60.090704
    [9] Li Shu-Lei, Liu Lei, Gao Tai-Chang, Huang Wei, Hu Shuai. Sensitivity analysis of terahertz wave passive remote sensing of cirrus microphysical parameters. Acta Physica Sinica, 2016, 65(13): 134102. doi: 10.7498/aps.65.134102
    [10] Li Xiao-Lu, Bai Ya, Liu Peng. Control of the terahertz spectra generated from laser induced plasma. Acta Physica Sinica, 2020, 69(2): 024205. doi: 10.7498/aps.69.20191200
  • Citation:
Metrics
  • Abstract views:  1917
  • PDF Downloads:  413
  • Cited By: 0
Publishing process
  • Received Date:  12 July 2011
  • Accepted Date:  19 October 2011
  • Published Online:  15 April 2012

Theory research of negative dynamic conductivity in electrically pumped multiple graphene layer structures with split gates

  • 1. Qingdao Key Laboratory of Terahertz Technology, College of Science,Shandong University of Science and Technology, Qingdao 266510, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 61001018), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2011FM009), the Research Fund of Shandong University of Science and Technology (SDUST), China (Grant No. 2010KYJQ103), the project of Shandong Province Higher Educational Science and Technology Program( Grant No. J11LG20), the Qingdao Science and Technology Program (Grant No. 11-2-4-4-(8)-jch,10-3-4-2-1-jcj), and the Shandong University of Science and Technology Foundation, China (Grant No. YCB110084).

Abstract: The negative dynamic conductivity of graphene in THz range makes it to be a promise medium in THz radiation and amplification. This paper proposes electrically pumped multiple graphene layer structures with split gates, sets up the theory model of electrically induced n-i-p junction, calculates the ac conductivity associated with the interband and intraband transitions under the conditions of population inversion, discusses the bias voltage, gate voltage, number of graphene layers and the momentum relaxation time dependences of ac conductivity. It is shown that the real part of dynamic conductivity within terahertz range can be negative in certain conditions, namely, interband radiation is greater than the intraband absorption, which demonstrates the feasibility of taking electrically pumped multiple graphene layer structures with split gates as an active medium in radiating terahertz coherent source.

Reference (23)

Catalog

    /

    返回文章
    返回