Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Molecular dynamics simulation of energy exchanges between single hydrogen and graphite(001)

Zhang Zhi-Hai Sun Ji-Zhong Liu Sheng-Guang Wang De-Zhen

Molecular dynamics simulation of energy exchanges between single hydrogen and graphite(001)

Zhang Zhi-Hai, Sun Ji-Zhong, Liu Sheng-Guang, Wang De-Zhen
PDF
Get Citation
  • Molecular dynamics simulation is applied to the investigation of energy exchanges between single hydrogen and graphite (001). In addition to energy transfer efficiency, in this paper we analyse various kinds of possible processes, which are the absorption on the upside graphite surface, reflection, absorption on the downside graphite surface and penetration, during the course of a hydrogen atom bombarding the crystalline graphite containing four graphene sheets. The simulation results show that the interlayer interaction has a big influence on the reflection, especially when the incident energy is larger than 20.0 eV. The reflection coefficient increases evidently compared with that in single graphene sheet case. If the incident hydrogen has a kinetic energy more than 25.0 eV, it can penetrate the four- sheet graphite at some striking locations. When the incident energy is larger than 28.0 eV, the energy transferring to the first graphene sheet is more than to the second graphene sheet. These results will be helpful for understanding the chemical erosion of carbon based materials and the tritium retention occurring in fusion devices.
    • Funds: Project supported by the National Basic Research Program of China(Grant Nos. 2008CB717801, 2010CB832901), and the Fundamental Research Funds for the Central Universities (Grant. No. DUT10ZD111).
    [1]

    Roth J, Garcia-Rosales C 1996 Nucl. Fusion 36 1647

    [2]

    Liu S G, Sun J Z, Dai S Y, Stirner T,Wang D Z 2010 J. Appl. Phys. 108 073302

    [3]

    Alimov V Kh, Roth 2007 J. Phys. Scr T128 6

    [4]

    Janeschitz G, Borrass K, Federici G, Igitkhanov Y, Kukushkin M, Pacher H D, Pacher GW, Sugihara M 1995 J. Nucl. Mater. 220 73

    [5]

    Li Q C, Zheng Y Z, Cheng F Y, Deng X B, Deng D S, You P L, Liu G A, Chen X D 2001 Acta Phys. Sin. 50 507 (in Chinese) [李齐良, 郑永真, 程发银, 邓小波, 邓冬生, 游佩林, 刘贵昂, 陈向东 2001 物理学报 50 507]

    [6]

    MölerW, EcksteinW, Biersack J P 1988 Comput. Phys. Commun. 51 355

    [7]

    Biersack J P, Haggmark L G 1980 Nucl. Instr. and Meth 174 257

    [8]

    Jacob J, Hopf C 2005 J. Nucl. Mater. 342 141

    [9]

    Schneider R, Rai A, Mutzke A, Warrier M, Salonen E, Nordlund K 2007 J. Nucl. Mater. 367 1238

    [10]

    Salonen S, Nordlund K, Keinonen J, Wu C H 2001 Phys. Rev. B 63 195415

    [11]

    Sun J Z, Li S Y, Stirner T, Chen J L,Wang D Z 2010 J. Appl. Phys. 107 113533

    [12]

    Mech B V, Haasz A A, Davis J W 1998 J. Nucl. Mater. 255 153

    [13]

    Li R, Hu Y Z, Wang H, Zhang Y J 2006 Acta Phys. Sin. 55 5455 (in Chinese) [李瑞, 胡元中, 王慧, 张宇军 2006 物理学报 55 5455]

    [14]

    Ito A, Nakamura H 2008 Commun. Comput. Phys. 4 592

    [15]

    Ito A, Nakamura H 2006 J. Plasma Phys. 72 805

    [16]

    Ito A, Nakamura H, Takayama A arXiv: 0703377 [cond-mat]

    [17]

    Ito A, Wang Y, Irle S, Morokuma K, Nakamura H 2009 J. Nucl. Mater. 390 183

    [18]

    Li S Y, Sun J Z, Zhang Z H, Liu S G, Wang D Z 2011 Acta Phys. Sin. accepted (in Chinese) [李守阳, 孙继忠, 张治海, 刘升光, 王德真 2011 物理学报 (已接收)]

    [19]

    Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S B 2002 J. Phys. Cond. Matter 14 783

  • [1]

    Roth J, Garcia-Rosales C 1996 Nucl. Fusion 36 1647

    [2]

    Liu S G, Sun J Z, Dai S Y, Stirner T,Wang D Z 2010 J. Appl. Phys. 108 073302

    [3]

    Alimov V Kh, Roth 2007 J. Phys. Scr T128 6

    [4]

    Janeschitz G, Borrass K, Federici G, Igitkhanov Y, Kukushkin M, Pacher H D, Pacher GW, Sugihara M 1995 J. Nucl. Mater. 220 73

    [5]

    Li Q C, Zheng Y Z, Cheng F Y, Deng X B, Deng D S, You P L, Liu G A, Chen X D 2001 Acta Phys. Sin. 50 507 (in Chinese) [李齐良, 郑永真, 程发银, 邓小波, 邓冬生, 游佩林, 刘贵昂, 陈向东 2001 物理学报 50 507]

    [6]

    MölerW, EcksteinW, Biersack J P 1988 Comput. Phys. Commun. 51 355

    [7]

    Biersack J P, Haggmark L G 1980 Nucl. Instr. and Meth 174 257

    [8]

    Jacob J, Hopf C 2005 J. Nucl. Mater. 342 141

    [9]

    Schneider R, Rai A, Mutzke A, Warrier M, Salonen E, Nordlund K 2007 J. Nucl. Mater. 367 1238

    [10]

    Salonen S, Nordlund K, Keinonen J, Wu C H 2001 Phys. Rev. B 63 195415

    [11]

    Sun J Z, Li S Y, Stirner T, Chen J L,Wang D Z 2010 J. Appl. Phys. 107 113533

    [12]

    Mech B V, Haasz A A, Davis J W 1998 J. Nucl. Mater. 255 153

    [13]

    Li R, Hu Y Z, Wang H, Zhang Y J 2006 Acta Phys. Sin. 55 5455 (in Chinese) [李瑞, 胡元中, 王慧, 张宇军 2006 物理学报 55 5455]

    [14]

    Ito A, Nakamura H 2008 Commun. Comput. Phys. 4 592

    [15]

    Ito A, Nakamura H 2006 J. Plasma Phys. 72 805

    [16]

    Ito A, Nakamura H, Takayama A arXiv: 0703377 [cond-mat]

    [17]

    Ito A, Wang Y, Irle S, Morokuma K, Nakamura H 2009 J. Nucl. Mater. 390 183

    [18]

    Li S Y, Sun J Z, Zhang Z H, Liu S G, Wang D Z 2011 Acta Phys. Sin. accepted (in Chinese) [李守阳, 孙继忠, 张治海, 刘升光, 王德真 2011 物理学报 (已接收)]

    [19]

    Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S B 2002 J. Phys. Cond. Matter 14 783

  • [1] Li Shou-Yang, Sun Ji-Zhong, Zhang Zhi-Hai, Liu Sheng-Guang, Wang De-Zhen. Molecular dynamics simulation of energy exchange during hydrogen collision with graphite sheet containing a vacancy. Acta Physica Sinica, 2011, 60(5): 057901. doi: 10.7498/aps.60.057901
    [2] Sun Ji-Zhong, Zhang Zhi-Hai, Liu Sheng-Guang, Wang De-Zhen. Molecular dynamics simulation of energetic hydrogen isotopes bombarding the crystalline graphite(001). Acta Physica Sinica, 2012, 61(5): 055201. doi: 10.7498/aps.61.055201
    [3] Guo Long-Ting, Sun Ji-Zhong, Huang Yan, Liu Sheng-Guang, Wang De-Zhen. Molecular dynamics simulation of low-energy hydrogen atoms bombarding tungsten (001) surface at different angles and their depth distribution. Acta Physica Sinica, 2013, 62(22): 227901. doi: 10.7498/aps.62.227901
    [4] Han Tong-Wei, He Peng-Fei. Molecular dynamics simulation of relaxation properties of graphene sheets. Acta Physica Sinica, 2010, 59(5): 3408-3413. doi: 10.7498/aps.59.3408
    [5] Li Yan-Ru, He Qiu-Xiang, Wang Fang, Xiang Lang, Zhong Jian-Xin, Meng Li-Jun. Dynamical evolution study of metal nanofilms on graphite substrates. Acta Physica Sinica, 2016, 65(3): 036804. doi: 10.7498/aps.65.036804
    [6] Huang Liang-Feng, Li Yan-Ling, Ni Mei-Yan, Wang Xian-Long, Zhang Guo-Ren, Zeng Zhi. Lattice dynamics of hydrogen-substituted graphene systems. Acta Physica Sinica, 2009, 58(13): 306-S312. doi: 10.7498/aps.58.306
    [7] Du You-Wei, Wang Zhi-Ming, Ni Gang, Xing Ding-Yu, Xu Qing-Yu. Huge magnetoresistance effect of highly oriented pyrolytic graphite. Acta Physica Sinica, 2004, 53(4): 1191-1194. doi: 10.7498/aps.53.1191
    [8] Chen Yong-Jun, Zhao Ru-Guang, Yang Wei-Sheng. Scanning tunneling microscopy studies of alkane and alkanol adsorbed on graphite. Acta Physica Sinica, 2005, 54(1): 284-290. doi: 10.7498/aps.54.284
    [9] Feng Pei-Pei, Wu Han, Zhang Nan. Study of the time-resolved emission spectra of the ejected plume generated by ultrashort laser ablation of graphite. Acta Physica Sinica, 2015, 64(21): 214201. doi: 10.7498/aps.64.214201
    [10] Shi Yun-Sheng, Liu Bing-Qi, Yang Xing, Dong Hua-Lai. Characterization and analysis of microscale superlubricity graphite surface. Acta Physica Sinica, 2016, 65(23): 234601. doi: 10.7498/aps.65.234601
  • Citation:
Metrics
  • Abstract views:  1497
  • PDF Downloads:  373
  • Cited By: 0
Publishing process
  • Received Date:  07 December 2010
  • Accepted Date:  27 April 2011
  • Published Online:  15 April 2012

Molecular dynamics simulation of energy exchanges between single hydrogen and graphite(001)

  • 1. School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, China
Fund Project:  Project supported by the National Basic Research Program of China(Grant Nos. 2008CB717801, 2010CB832901), and the Fundamental Research Funds for the Central Universities (Grant. No. DUT10ZD111).

Abstract: Molecular dynamics simulation is applied to the investigation of energy exchanges between single hydrogen and graphite (001). In addition to energy transfer efficiency, in this paper we analyse various kinds of possible processes, which are the absorption on the upside graphite surface, reflection, absorption on the downside graphite surface and penetration, during the course of a hydrogen atom bombarding the crystalline graphite containing four graphene sheets. The simulation results show that the interlayer interaction has a big influence on the reflection, especially when the incident energy is larger than 20.0 eV. The reflection coefficient increases evidently compared with that in single graphene sheet case. If the incident hydrogen has a kinetic energy more than 25.0 eV, it can penetrate the four- sheet graphite at some striking locations. When the incident energy is larger than 28.0 eV, the energy transferring to the first graphene sheet is more than to the second graphene sheet. These results will be helpful for understanding the chemical erosion of carbon based materials and the tritium retention occurring in fusion devices.

Reference (19)

Catalog

    /

    返回文章
    返回