Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical study of flow field characteristics for triplet impingement injector and combustor

Jin Dong-Huan Liu Wen-Guang Chen Xing Lu Qi-Sheng Zhao Yi-Jun

Numerical study of flow field characteristics for triplet impingement injector and combustor

Jin Dong-Huan, Liu Wen-Guang, Chen Xing, Lu Qi-Sheng, Zhao Yi-Jun
PDF
Get Citation
  • The chemical reactions in combustor are described by integrating Eddy-Dissipation Model with Arrhenius rate coefficients. The cold and react flow fields of triplet impingement injector and combustor are simulated using the three-dimensional computational fluid dynamics method. Both helicity and mixing length are introduced to study the mixing mechanism and the effect of triplet impingement injector. The key characteristic parameters of combustor, e.g., spatial distributions of total temperature and pressure, residence time of gas flow in combustor, are obtained. The flow field characteristics of triplet impingement injector and combustor for Fuel-Oxidizer-Fuel (F-O-F) and Oxidizer-Fuel-Oxidizer (O-F-O) triplet arrangements are analyzed. The degree of F2 dissociation in combustor exit plane for O-F-O triplet arrangement is 13.5% higher than that for the F-O-F triplet arrangement under conditions of specified composition proportioning and combustor characteristic length. Experimental result demonstrates that the output power of laser is increased by 17%.
      Corresponding author: Jin Dong-Huan, jinboyiyi@163.com
    [1]

    Fedorov I A (Translated by Yuan S F, Ma J G, Hua W H, Chen Y X) 2010 CW Chemical HF/DF Lasers (Changsha: National University of Defense Technology Press) p37 (in Chinese) [费德洛夫 (袁圣付, 马建光, 华卫红, 陈元兴译) 2010 连续波氟化氢和氟化氘化学激光器 (长沙: 国防科技大学出版社) 第37页]

    [2]

    Huzel D K 2004 Modern Engineering for Design of Liquid- Propellant Rocket Engines (Beijing: China Astronautic Publishing House) p129–140 (in Chinese) [休泽尔 D K 2004 液体火箭发动机现代工程设计 (北京: 中国宇航出版社) 第129-140页]

    [3]

    Duncan W A, Patterson S P, Graves B R, Cordi A J, Yonehara G N, Sollee J L 1994 Proc. SPIE 2119 47

    [4]

    Waldo R E, Betts J A, Graves B R, Patterson S P 1997 28th AIAA Plasmadynamics and Lasers Conference Atlanta, USA, June 23– 25, 1997

    [5]

    Gordon S, McBride B J 1994 NASA RP-1311

    [6]

    Lohn P D, Haflinger D E, Fink S F, Wong E Y, McGregor R D, ChanWR,Waldo R E, TaylorME, Sollee J L, Hook D L, Behrens H W 1999 30th AIAA Plasmadynamics and Lasers Conference Norfolk, England, June 28–July 1, 1999

    [7]

    Kwok M A 2001 32nd AIAA Plasmadynamics and Lasers Conference Anaheim, USA, June 11–14, 2001

    [8]

    Kwok M A 2002 33rd AIAA Plasmadynamics and Lasers Conference Maui, USA, May 20–23, 2002

    [9]

    HuaW H, Jiang Z F, Zhao Y J 1998 J. Combus. Sci. Technol. 4 91 (in Chinese) [华卫红, 姜宗福, 赵伊君 1998 燃烧科学与技术 4 91]

    [10]

    Yan F X, Kang R D 2009 Chemical Defence on Ships 2 24 (in Chinese) [颜飞雪, 康蓉娣 2009 舰船防化 2 24]

    [11]

    Du C, Xu M Y, Mi J C 2010 Acta Phys. Sin. 59 6331 (in Chinese) [杜诚, 徐敏义, 米建春 2010 物理学报 59 6331]

    [12]

    Shih T H, Liou W W, Shabbir A, Yang Z, Zhu J 1995 Comput. Fluids 24 227

    [13]

    Pritchard R, Guy J J, Connor N E 1993 Industrial Gas Utilization: Engineering Principles and Practice (Beijing: China Architecture & Building Press) p104 (in Chinese) [普利查德 R, 盖依 J J, 康诺尔 N E 1983 燃气应用技术 (北京: 中国建筑工业出版社) 第104页]

    [14]

    Xu M Y, Du C, Mi J C 2011 Acta Phys. Sin. 60 034701 (in Chinese) [徐敏义, 杜诚, 米建春 2011 物理学报 60 034701]

    [15]

    Zhao J X 2002 Numerical Simulation of Combustion (Beijing: Science Press) p113–118 (in Chinese) [赵坚行 2002 燃烧的数值模拟 (北京: 科学出版社) 第113-118页]

    [16]

    Tong B G, Yin X Y, Zhu K Q 2009 Theory of Vortex Movement (Hefei: University of Science and Technology of China Press) p57–59 (in Chinese) [童秉纲, 尹协远, 朱克勤 2009 涡运动理论 (合肥: 中国科学技术大学出版社) 第57-59页]

    [17]

    Liu W G, Jin D H, Chen X, Hua W H, Yuan S F, Yan B Z, Lu Q S, Zhao Y J 2011 Chin. J. Lasers 38 0304002-6 (in Chinese) [刘文广, 靳冬欢, 陈星, 华卫红, 袁圣付, 闫宝珠, 陆启生, 赵伊君 2011 中国激光 38 0304002-6]

  • [1]

    Fedorov I A (Translated by Yuan S F, Ma J G, Hua W H, Chen Y X) 2010 CW Chemical HF/DF Lasers (Changsha: National University of Defense Technology Press) p37 (in Chinese) [费德洛夫 (袁圣付, 马建光, 华卫红, 陈元兴译) 2010 连续波氟化氢和氟化氘化学激光器 (长沙: 国防科技大学出版社) 第37页]

    [2]

    Huzel D K 2004 Modern Engineering for Design of Liquid- Propellant Rocket Engines (Beijing: China Astronautic Publishing House) p129–140 (in Chinese) [休泽尔 D K 2004 液体火箭发动机现代工程设计 (北京: 中国宇航出版社) 第129-140页]

    [3]

    Duncan W A, Patterson S P, Graves B R, Cordi A J, Yonehara G N, Sollee J L 1994 Proc. SPIE 2119 47

    [4]

    Waldo R E, Betts J A, Graves B R, Patterson S P 1997 28th AIAA Plasmadynamics and Lasers Conference Atlanta, USA, June 23– 25, 1997

    [5]

    Gordon S, McBride B J 1994 NASA RP-1311

    [6]

    Lohn P D, Haflinger D E, Fink S F, Wong E Y, McGregor R D, ChanWR,Waldo R E, TaylorME, Sollee J L, Hook D L, Behrens H W 1999 30th AIAA Plasmadynamics and Lasers Conference Norfolk, England, June 28–July 1, 1999

    [7]

    Kwok M A 2001 32nd AIAA Plasmadynamics and Lasers Conference Anaheim, USA, June 11–14, 2001

    [8]

    Kwok M A 2002 33rd AIAA Plasmadynamics and Lasers Conference Maui, USA, May 20–23, 2002

    [9]

    HuaW H, Jiang Z F, Zhao Y J 1998 J. Combus. Sci. Technol. 4 91 (in Chinese) [华卫红, 姜宗福, 赵伊君 1998 燃烧科学与技术 4 91]

    [10]

    Yan F X, Kang R D 2009 Chemical Defence on Ships 2 24 (in Chinese) [颜飞雪, 康蓉娣 2009 舰船防化 2 24]

    [11]

    Du C, Xu M Y, Mi J C 2010 Acta Phys. Sin. 59 6331 (in Chinese) [杜诚, 徐敏义, 米建春 2010 物理学报 59 6331]

    [12]

    Shih T H, Liou W W, Shabbir A, Yang Z, Zhu J 1995 Comput. Fluids 24 227

    [13]

    Pritchard R, Guy J J, Connor N E 1993 Industrial Gas Utilization: Engineering Principles and Practice (Beijing: China Architecture & Building Press) p104 (in Chinese) [普利查德 R, 盖依 J J, 康诺尔 N E 1983 燃气应用技术 (北京: 中国建筑工业出版社) 第104页]

    [14]

    Xu M Y, Du C, Mi J C 2011 Acta Phys. Sin. 60 034701 (in Chinese) [徐敏义, 杜诚, 米建春 2011 物理学报 60 034701]

    [15]

    Zhao J X 2002 Numerical Simulation of Combustion (Beijing: Science Press) p113–118 (in Chinese) [赵坚行 2002 燃烧的数值模拟 (北京: 科学出版社) 第113-118页]

    [16]

    Tong B G, Yin X Y, Zhu K Q 2009 Theory of Vortex Movement (Hefei: University of Science and Technology of China Press) p57–59 (in Chinese) [童秉纲, 尹协远, 朱克勤 2009 涡运动理论 (合肥: 中国科学技术大学出版社) 第57-59页]

    [17]

    Liu W G, Jin D H, Chen X, Hua W H, Yuan S F, Yan B Z, Lu Q S, Zhao Y J 2011 Chin. J. Lasers 38 0304002-6 (in Chinese) [刘文广, 靳冬欢, 陈星, 华卫红, 袁圣付, 闫宝珠, 陆启生, 赵伊君 2011 中国激光 38 0304002-6]

  • [1] Cheng Yu-Guo, Xia Guang-Qing. Numerical investigation on the plasma acceleration of the inductive pulsed plasma thruster. Acta Physica Sinica, 2017, 66(7): 075204. doi: 10.7498/aps.66.075204
    [2] Geng Shao-Fei, Tang De-Li, Zhao Jie, Qiu Xiao-Ming. Particle-in-cell simulation of a cylindrical Hall anode layer plasma accelerator. Acta Physica Sinica, 2009, 58(8): 5520-5525. doi: 10.7498/aps.58.5520
    [3] Jiang Yong, He Shao-Bo, Yuan Xiao-Dong, Wang Hai-Jun, Liao Wei, Lü Hai-Bing, Liu Chun-Ming, Xiang Xia, Qiu Rong, Yang Yong-Jia, Zheng Wan-Guo, Zu Xiao-Tao. Experimental investigation and numerical simulation of defect elimination by CO2 laser raster scanning on fused silica. Acta Physica Sinica, 2014, 63(6): 068105. doi: 10.7498/aps.63.068105
    [4] Deng Yi-Xin, Tu Cheng-Hou, Lü Fu-Yun. Study of self-similar pulse nonlinear polarization rotation mode-locked fiber laser. Acta Physica Sinica, 2009, 58(5): 3173-3178. doi: 10.7498/aps.58.3173
    [5] Qin Li, Ning Yong-Qiang, Yan Chang-Ling, Wang Li-Jun, Cui Da-Fu, Li Cheng-Ming, Peng Qin-Jun, Xu Zu-Yan, Zong Nan, Li Te. Numerical simulation of intracavity second harmonic generation for optically pumped semiconductor vertical-external-cavity surface-emitting lasers. Acta Physica Sinica, 2009, 58(6): 3903-3908. doi: 10.7498/aps.58.3903
    [6] Long Jian-Fei, Zhang Tian-Ping, Yang Wei, Sun Ming-Ming, Jia Yan-Hui, Liu Ming-Zheng. Thrust density characteristics of ion thruster. Acta Physica Sinica, 2018, 67(2): 022901. doi: 10.7498/aps.67.20171507
    [7] Nie Tao, Liu Wei-Qiang. Study of coupled fluid and solid for a hypersonic lending edge. Acta Physica Sinica, 2012, 61(18): 184401. doi: 10.7498/aps.61.184401
    [8] Yu Bo, Zhang Yan, He Wei-Guo, Hang Guan-Rong, Kang Xiao-Lu, Zhao Qing. Plume neutralization mechanism for ultrasonically aided electrospray thruster. Acta Physica Sinica, 2018, 67(4): 040201. doi: 10.7498/aps.67.20171972
    [9] Geng Shao-Fei, Tang De-Li, Qiu Xiao-Ming, Nie Jun-Wei, Yu Yi-Jun. The influence of Hall drift to the ionization efficiency of anode layer Hall plasma accelerator. Acta Physica Sinica, 2012, 61(7): 075210. doi: 10.7498/aps.61.075210
    [10] Ding Ming-Song, Jiang Tao, Dong Wei-Zhong, Gao Tie-Suo, Liu Qing-Zong, Fu Yang-Ao-Xiao. Numerical analysis of influence of thermochemical model on hypersonic magnetohydrodynamic control. Acta Physica Sinica, 2019, 68(17): 174702. doi: 10.7498/aps.68.20190378
  • Citation:
Metrics
  • Abstract views:  2105
  • PDF Downloads:  14222
  • Cited By: 0
Publishing process
  • Received Date:  14 May 2011
  • Accepted Date:  23 June 2011
  • Published Online:  20 March 2012

Numerical study of flow field characteristics for triplet impingement injector and combustor

    Corresponding author: Jin Dong-Huan, jinboyiyi@163.com
  • 1. College of Opto-Electronic Science and Engineering, National University of Defense Technology, Changsha 410073, China

Abstract: The chemical reactions in combustor are described by integrating Eddy-Dissipation Model with Arrhenius rate coefficients. The cold and react flow fields of triplet impingement injector and combustor are simulated using the three-dimensional computational fluid dynamics method. Both helicity and mixing length are introduced to study the mixing mechanism and the effect of triplet impingement injector. The key characteristic parameters of combustor, e.g., spatial distributions of total temperature and pressure, residence time of gas flow in combustor, are obtained. The flow field characteristics of triplet impingement injector and combustor for Fuel-Oxidizer-Fuel (F-O-F) and Oxidizer-Fuel-Oxidizer (O-F-O) triplet arrangements are analyzed. The degree of F2 dissociation in combustor exit plane for O-F-O triplet arrangement is 13.5% higher than that for the F-O-F triplet arrangement under conditions of specified composition proportioning and combustor characteristic length. Experimental result demonstrates that the output power of laser is increased by 17%.

Reference (17)

Catalog

    /

    返回文章
    返回