Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

STM study of growth of manganese silicide thin films on a Si(100)-21 surface

Li Wei-Cong Zou Zhi-Qiang Wang Dan Shi Gao-Ming

STM study of growth of manganese silicide thin films on a Si(100)-21 surface

Li Wei-Cong, Zou Zhi-Qiang, Wang Dan, Shi Gao-Ming
PDF
Get Citation
  • Manganese silicides are promising candidates for microelectronics and spintronics materials. A good understanding of their growth mechanisms is a crucial step toward their practical applications. In this paper, a Mn film of ~4 monolayer is deposited on a Si(100)-21 surface by molecular beam epitaxy. The solid reaction between the Mn film and the silicon substrate in a temperature range of 250750℃ is studied using scanning tunneling microscopy. At room temperature, the as-deposited Mn atoms do not react with the silicon atoms and the film consists of disordered Mn clusters. When the sample is annealed at a higher temperature than 290℃, the Mn begins to react with the Si and forms small three-dimensional (3D) islands of Mn-rich silicides and silicide islands of dendritic shapes. When the annealing temperature reaches 325℃, small tabular islands, which correspond to MnSi, start to grow on the Si substrate. At an annealing temperature of 525℃, silicide islands with dendritic shapes all disappear; meantime several large tabular islands, which correspond to MnSi1.7, are formed. When the annealing temperature is higher than 600℃, 3D islands and small tabular islands all disappear while large tabular islands remain there. These results demonstrate that the morphology and the structure of the film strongly depend on annealing temperature. The average size (area) of the remaining islands increases with the increase of annealing time. Time dependence of the averaged island area indicates that the growth of the islands follows the diffusion limited Ostwald ripening mechanism.
      Corresponding author: Zou Zhi-Qiang, zqzou@sjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.61176017) and the Innovation Program of ShanghaiMunicipal Education Commission,China (Grant No.12ZZ025).
    [1]

    Wang J L,Hirai M,Kusaka M,Iwami M 1997 Appl.Surf.Sci.113-114 53

    [2]
    [3]

    Tanaka M,Zhang Q,Takeguchi M,Furuya K 2003 Surf.Sci.532- 535 946

    [4]
    [5]

    Lippitz H,Paggel J J,Fumagalli P 2005 Surf.Sci.575 307

    [6]

    Kumar A,Tallarida M,Hansmann M,Starke U,Horn K 2004 J.Phys.D:Appl.Phys.37 1083

    [7]
    [8]
    [9]

    Lian Y C,Chen L J 1986 Appl.Phys.Lett.48 359

    [10]

    Hou Q R,Zhao W,Chen Y B,Liang D,Feng X,Zhang H Y,He Y J 2007 Phys.Status Solidi A 204 3429

    [11]
    [12]

    Hou Q R,Zhao W,Chen Y B,He Y J 2010 Mater.Chem.Phys.121 103

    [13]
    [14]
    [15]

    Teichert S,Sarkar D K,Schwendler S,Giesler H,Mogilatenko A,Falke M,Beddies G,Hinneberg H J 2001 Microelectron.Eng.55 227

    [16]

    Teichert S,Schwendler S,Sarkar D K,Mogilatenko A,Falke M,Beddies G,Kleint C,Hinneberg H J 2001 J.Cryst.Growth 227- 228 882

    [17]
    [18]
    [19]

    Krause M R,Stollenwerk A J,Licurse M,LaBella V P 2007 Appl.Phys.Lett.91 041903

    [20]

    Wang J L,Su W F,Xu R,Fan Y L,Jiang Z M 2009 J.Raman Spectrosc.40 335

    [21]
    [22]
    [23]

    Zou Z Q,Wang H,Wang D,Wang Q K 2007 Appl.Phys.Lett.90 133111

    [24]

    Zou Z Q,Wang D,Sun J J,Liang J M 2010 J.Appl.Phys.107 014302

    [25]
    [26]

    Wang D,Zou Z Q 2009 Nanotechnology 20 275607

    [27]
    [28]
    [29]

    Ren P,Liu Z L,Ye J,Jiang Y,Liu J F,SunY,Xu P S,Sun ZH,Pan Z Y,Yan WS,Wei S Q 2008 Acta Phys.Sin.57 4322 (in Chinese)[任鹏,刘忠良,叶剑,姜泳,刘金锋,孙玉,徐彭寿,孙治湖,潘志云,闫文盛,韦世强 2008 物理学报 57 4322]

    [30]

    Qiu Y F,Du W H,Wang B 2011 Acta Phys.Sin.60 036801 (in Chinese) [邱云飞,杜文汉,王兵 2011 物理学报 60 036801]

    [31]
    [32]

    Yang J J,Du W H 2011 Acta Phys.Sin.60 037301 (in Chinese)[杨景景,杜文汉 2011 物理学报 60 037301]

    [33]
    [34]

    Wu H,Hortamani M,Kratzer P,Scheffler M 2004 Phys.Rev.Lett.92 237202

    [35]
    [36]
    [37]

    Hortamani M,Wu H,Kratzer P,Scheffler M 2006 Phys.Rev.B 74 205305

    [38]
    [39]

    Wang D Y,Wu H Y,Chen L J,HeW,Zhan Q F,Cheng Z H,2006 J.Phys.:Condens.Mat.18 6357

    [40]

    Wang J Z,Jia J F,Xiong Z H,Xue Q K 2008 Phys.Rev.B 78 045424

    [41]
    [42]
    [43]

    Fitting L,Zeman M C,Yang W C,Nemanich R J 2003 J.Appl.Phys.93 4180

    [44]

    Theis W,Bartelt N C,Tromp R M 1995 Phys.Rev.Lett.75 3328

    [45]
  • [1]

    Wang J L,Hirai M,Kusaka M,Iwami M 1997 Appl.Surf.Sci.113-114 53

    [2]
    [3]

    Tanaka M,Zhang Q,Takeguchi M,Furuya K 2003 Surf.Sci.532- 535 946

    [4]
    [5]

    Lippitz H,Paggel J J,Fumagalli P 2005 Surf.Sci.575 307

    [6]

    Kumar A,Tallarida M,Hansmann M,Starke U,Horn K 2004 J.Phys.D:Appl.Phys.37 1083

    [7]
    [8]
    [9]

    Lian Y C,Chen L J 1986 Appl.Phys.Lett.48 359

    [10]

    Hou Q R,Zhao W,Chen Y B,Liang D,Feng X,Zhang H Y,He Y J 2007 Phys.Status Solidi A 204 3429

    [11]
    [12]

    Hou Q R,Zhao W,Chen Y B,He Y J 2010 Mater.Chem.Phys.121 103

    [13]
    [14]
    [15]

    Teichert S,Sarkar D K,Schwendler S,Giesler H,Mogilatenko A,Falke M,Beddies G,Hinneberg H J 2001 Microelectron.Eng.55 227

    [16]

    Teichert S,Schwendler S,Sarkar D K,Mogilatenko A,Falke M,Beddies G,Kleint C,Hinneberg H J 2001 J.Cryst.Growth 227- 228 882

    [17]
    [18]
    [19]

    Krause M R,Stollenwerk A J,Licurse M,LaBella V P 2007 Appl.Phys.Lett.91 041903

    [20]

    Wang J L,Su W F,Xu R,Fan Y L,Jiang Z M 2009 J.Raman Spectrosc.40 335

    [21]
    [22]
    [23]

    Zou Z Q,Wang H,Wang D,Wang Q K 2007 Appl.Phys.Lett.90 133111

    [24]

    Zou Z Q,Wang D,Sun J J,Liang J M 2010 J.Appl.Phys.107 014302

    [25]
    [26]

    Wang D,Zou Z Q 2009 Nanotechnology 20 275607

    [27]
    [28]
    [29]

    Ren P,Liu Z L,Ye J,Jiang Y,Liu J F,SunY,Xu P S,Sun ZH,Pan Z Y,Yan WS,Wei S Q 2008 Acta Phys.Sin.57 4322 (in Chinese)[任鹏,刘忠良,叶剑,姜泳,刘金锋,孙玉,徐彭寿,孙治湖,潘志云,闫文盛,韦世强 2008 物理学报 57 4322]

    [30]

    Qiu Y F,Du W H,Wang B 2011 Acta Phys.Sin.60 036801 (in Chinese) [邱云飞,杜文汉,王兵 2011 物理学报 60 036801]

    [31]
    [32]

    Yang J J,Du W H 2011 Acta Phys.Sin.60 037301 (in Chinese)[杨景景,杜文汉 2011 物理学报 60 037301]

    [33]
    [34]

    Wu H,Hortamani M,Kratzer P,Scheffler M 2004 Phys.Rev.Lett.92 237202

    [35]
    [36]
    [37]

    Hortamani M,Wu H,Kratzer P,Scheffler M 2006 Phys.Rev.B 74 205305

    [38]
    [39]

    Wang D Y,Wu H Y,Chen L J,HeW,Zhan Q F,Cheng Z H,2006 J.Phys.:Condens.Mat.18 6357

    [40]

    Wang J Z,Jia J F,Xiong Z H,Xue Q K 2008 Phys.Rev.B 78 045424

    [41]
    [42]
    [43]

    Fitting L,Zeman M C,Yang W C,Nemanich R J 2003 J.Appl.Phys.93 4180

    [44]

    Theis W,Bartelt N C,Tromp R M 1995 Phys.Rev.Lett.75 3328

    [45]
  • [1] High-speed and large-scale light-sheet microscopy with electrically tunable lens. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191908
    [2] Research on few-mode PAM regenerator based on nonlinear optical fiber loop mirror. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191858
  • Citation:
Metrics
  • Abstract views:  2071
  • PDF Downloads:  607
  • Cited By: 0
Publishing process
  • Received Date:  02 March 2011
  • Accepted Date:  03 June 2011
  • Published Online:  20 March 2012

STM study of growth of manganese silicide thin films on a Si(100)-21 surface

    Corresponding author: Zou Zhi-Qiang, zqzou@sjtu.edu.cn
  • 1. Instrumental Analysis Center, Shanghai Jiaotong University, Shanghai 200240, China;
  • 2. Department of Physics, Shanghai Jiaotong University, Shanghai 200240, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No.61176017) and the Innovation Program of ShanghaiMunicipal Education Commission,China (Grant No.12ZZ025).

Abstract: Manganese silicides are promising candidates for microelectronics and spintronics materials. A good understanding of their growth mechanisms is a crucial step toward their practical applications. In this paper, a Mn film of ~4 monolayer is deposited on a Si(100)-21 surface by molecular beam epitaxy. The solid reaction between the Mn film and the silicon substrate in a temperature range of 250750℃ is studied using scanning tunneling microscopy. At room temperature, the as-deposited Mn atoms do not react with the silicon atoms and the film consists of disordered Mn clusters. When the sample is annealed at a higher temperature than 290℃, the Mn begins to react with the Si and forms small three-dimensional (3D) islands of Mn-rich silicides and silicide islands of dendritic shapes. When the annealing temperature reaches 325℃, small tabular islands, which correspond to MnSi, start to grow on the Si substrate. At an annealing temperature of 525℃, silicide islands with dendritic shapes all disappear; meantime several large tabular islands, which correspond to MnSi1.7, are formed. When the annealing temperature is higher than 600℃, 3D islands and small tabular islands all disappear while large tabular islands remain there. These results demonstrate that the morphology and the structure of the film strongly depend on annealing temperature. The average size (area) of the remaining islands increases with the increase of annealing time. Time dependence of the averaged island area indicates that the growth of the islands follows the diffusion limited Ostwald ripening mechanism.

Reference (45)

Catalog

    /

    返回文章
    返回