Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dissipative particle dynamics simulation of macromolecular solutions under Poiseuille flow in microchannels

Xu Shao-Feng Wang Jiu-Gen

Dissipative particle dynamics simulation of macromolecular solutions under Poiseuille flow in microchannels

Xu Shao-Feng, Wang Jiu-Gen
PDF
Get Citation
  • macromolecular solutions under Poiseuille flow in microchannels are investigated using the dissipative particle dynamics (DPD) approach. The results show that the macromolecular solutions are non-Newtonian fluids which can be described by power-law fluids, and the power-law index decreases with the increase of the macromolecular concentration. The DPD simulations show that the hydrodynamic interaction between the macromolecular chains and the wall, and the gradient of Brownian diffusivity of the chains govern the cross-stream migration of the macromolecules. However, the chain-wall hydrodynamic interaction may not be fully developed and are partly screened in conventional DPD approach. Hence, the chains migrate toward the wall during flow. Simulation results also indicate that the migration toward the wall increases with the increase of the driving force. The competition between the unscreened chain-wall hydrodynamic interaction and Brownian diffusivity leads to two symmetric off-center peaks and a local minimum in the channel centerline in the chain center-of-mass distribution. Under strong confinement, the chain-wall hydrodynamic interaction may be fully screened and the Brownian motion is weak, thus the chains weakly move toward the wall for channel of small width.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 50775202), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. J20081235), and the Natural Science Foundation of Zhejiang Province, China (Grant No. Z1100475).
    [1]

    Graham M D 2011 Annu. Rev. Fluid Mech. 43 273

    [2]

    Jiang S C, Zhang L X, Xia A G, Chen H P 2010 Acta Phys. Sin. 59 4337(in Chinese) [江绍钏, 章林溪, 夏阿根, 陈宏平 2010 物理学报 59 4337]

    [3]

    Reisner W, Morton K J, Riehn R, Wang Y M, Yu Z N, Rosen M, Sturm J C, Chou S Y, Frey E, Austin R H 2005 Phys. Rev. Lett. 94 196101

    [4]

    Pryor H I, Vacanti J P 2008 Front. Biosci. 13 2140

    [5]

    Muthukumar M 2001 Phys. Rev. Lett. 86 3188

    [6]

    Perkins T T, Simth D E, Larson R G, Chu S 1995 Science 268 83

    [7]

    Zheng J J, Yeung E S 2002 Anal. Chem. 74 4536

    [8]

    Zheng J J, Yeung E S 2003 Anal. Chem. 75 3675

    [9]

    Fang L, Hu H, Larson R G 2005 J. Rhel. 49 127

    [10]

    Chen Y L, Graham M D, de Pablo J J, Jo K, Schwartz D C 2005 Macromolecules 38 6680

    [11]

    Metzner A B, Cohen Y, Rangel-Nafaile C 1979 J. Non-Newtonian Fluid Mech. 5 449

    [12]

    Agarwall U S, Dutta A, Mashelkar R A 1994 Chem. Eng. Sci. 49 1693

    [13]

    Ma H, Graham M 2005 Phys. Fluids 17 083103

    [14]

    Brunn P O 1985 J. Chem. Sci. Polym. Phys. 23 89

    [15]

    Jendrejack R M, Schwartz D C, de Pablo J J, Graham M D 2004 J. Chem. Phys. 120 2513

    [16]

    Jendrejack R M, Schwartz D C, Graham M D, de Pablo J J 2003 J. Chem. Phys. 119 1165

    [17]

    Jendrejack R M, Dimalanta E T, Schwartz D C, Graham M D, de Pablo J J 2003 Phys. Rev. Lett. 91 038102

    [18]

    Jendrejack R M, de Pablo J J, Graham M D 2002 J. Chem. Phys. 116 7752

    [19]

    Usta O B, Butler J E, Ladd A J C 2006 Phys. Fluids 18 031703

    [20]

    Usta O B, Ladd A J C, Butler J E 2005 J. Chem. Phys. 122 094902

    [21]

    Khare R, Graham M D, de Pablo J J 2006 Phys. Rev. Lett. 96 224505

    [22]

    Fan X J, Phan-Thien N, Yong N T, Wu X H, Xu D 2003 Phys. Fluids 15 11

    [23]

    Fedosov D A, Karniadakis G E, Caswell B 2008 J. Chem. Phys. 128 144903

    [24]

    Millan J A, Jiang W H, Laradji M, Wang Y M 2007 J. Chem. Phys. 126 124905

    [25]

    Tong H P, Zhang L X 2012 Acta Phys. Sin. 61 058701 (in Chinese) [仝焕平, 章林溪 2012 物理学报 61 058701]

    [26]

    Segre G, Silberberg A 1961 Nature 189 209

    [27]

    Espanol P, Warren P B 1995 Europhys. Lett. 30 191

    [28]

    Groot R D, Warren P B 1997 J. Chem. Phys. 107 4423

    [29]

    Duong-Hong D, Phan-Thien N, Fan X J 2004 Comput. Mech. 35 24

    [30]

    Rapaport D C 2004 The Art of Molecular Dynamics Simulation (Cambridge, UK: Cambridge University Press) pp49-60

    [31]

    Zhou L W, Liu M B, Chang J Z 2012 Acta Polymerica Sinica 7 720 (in Chinese) [周吕文, 刘谋斌, 常建忠 2012 高分子学报 7 720]

    [32]

    Fan X J, Phan-Thien N, Chen S, Wu X H, Yong N T 2006 Phys. Fluids 18 063102

    [33]

    Jiang W H, Huang J H, Wang Y M, Laradji M 2007 J. Chem. Phys. 126 044901

  • [1]

    Graham M D 2011 Annu. Rev. Fluid Mech. 43 273

    [2]

    Jiang S C, Zhang L X, Xia A G, Chen H P 2010 Acta Phys. Sin. 59 4337(in Chinese) [江绍钏, 章林溪, 夏阿根, 陈宏平 2010 物理学报 59 4337]

    [3]

    Reisner W, Morton K J, Riehn R, Wang Y M, Yu Z N, Rosen M, Sturm J C, Chou S Y, Frey E, Austin R H 2005 Phys. Rev. Lett. 94 196101

    [4]

    Pryor H I, Vacanti J P 2008 Front. Biosci. 13 2140

    [5]

    Muthukumar M 2001 Phys. Rev. Lett. 86 3188

    [6]

    Perkins T T, Simth D E, Larson R G, Chu S 1995 Science 268 83

    [7]

    Zheng J J, Yeung E S 2002 Anal. Chem. 74 4536

    [8]

    Zheng J J, Yeung E S 2003 Anal. Chem. 75 3675

    [9]

    Fang L, Hu H, Larson R G 2005 J. Rhel. 49 127

    [10]

    Chen Y L, Graham M D, de Pablo J J, Jo K, Schwartz D C 2005 Macromolecules 38 6680

    [11]

    Metzner A B, Cohen Y, Rangel-Nafaile C 1979 J. Non-Newtonian Fluid Mech. 5 449

    [12]

    Agarwall U S, Dutta A, Mashelkar R A 1994 Chem. Eng. Sci. 49 1693

    [13]

    Ma H, Graham M 2005 Phys. Fluids 17 083103

    [14]

    Brunn P O 1985 J. Chem. Sci. Polym. Phys. 23 89

    [15]

    Jendrejack R M, Schwartz D C, de Pablo J J, Graham M D 2004 J. Chem. Phys. 120 2513

    [16]

    Jendrejack R M, Schwartz D C, Graham M D, de Pablo J J 2003 J. Chem. Phys. 119 1165

    [17]

    Jendrejack R M, Dimalanta E T, Schwartz D C, Graham M D, de Pablo J J 2003 Phys. Rev. Lett. 91 038102

    [18]

    Jendrejack R M, de Pablo J J, Graham M D 2002 J. Chem. Phys. 116 7752

    [19]

    Usta O B, Butler J E, Ladd A J C 2006 Phys. Fluids 18 031703

    [20]

    Usta O B, Ladd A J C, Butler J E 2005 J. Chem. Phys. 122 094902

    [21]

    Khare R, Graham M D, de Pablo J J 2006 Phys. Rev. Lett. 96 224505

    [22]

    Fan X J, Phan-Thien N, Yong N T, Wu X H, Xu D 2003 Phys. Fluids 15 11

    [23]

    Fedosov D A, Karniadakis G E, Caswell B 2008 J. Chem. Phys. 128 144903

    [24]

    Millan J A, Jiang W H, Laradji M, Wang Y M 2007 J. Chem. Phys. 126 124905

    [25]

    Tong H P, Zhang L X 2012 Acta Phys. Sin. 61 058701 (in Chinese) [仝焕平, 章林溪 2012 物理学报 61 058701]

    [26]

    Segre G, Silberberg A 1961 Nature 189 209

    [27]

    Espanol P, Warren P B 1995 Europhys. Lett. 30 191

    [28]

    Groot R D, Warren P B 1997 J. Chem. Phys. 107 4423

    [29]

    Duong-Hong D, Phan-Thien N, Fan X J 2004 Comput. Mech. 35 24

    [30]

    Rapaport D C 2004 The Art of Molecular Dynamics Simulation (Cambridge, UK: Cambridge University Press) pp49-60

    [31]

    Zhou L W, Liu M B, Chang J Z 2012 Acta Polymerica Sinica 7 720 (in Chinese) [周吕文, 刘谋斌, 常建忠 2012 高分子学报 7 720]

    [32]

    Fan X J, Phan-Thien N, Chen S, Wu X H, Yong N T 2006 Phys. Fluids 18 063102

    [33]

    Jiang W H, Huang J H, Wang Y M, Laradji M 2007 J. Chem. Phys. 126 044901

  • [1] Chang Jian-Zhong, Liu Han-Tao, Liu Mou-Bin, Su Tie-Xiong. Dissipative particle dynamics simulation of flow around a mesoscopic sphere with different Reynolds numbers. Acta Physica Sinica, 2012, 61(6): 064704. doi: 10.7498/aps.61.064704
    [2] Zeng Yi-Shan, Lu De-Tang, Guo Yong-Cun. The non-Newtonian fluid mathematical model for strata static temperature forecast. Acta Physica Sinica, 2005, 54(2): 802-806. doi: 10.7498/aps.54.802
    [3] Tang Wen-Lai, Xiang Nan, Zhang Xin-Jie, Huang Di, Ni Zhong-Hua. Dynamic process and flow-rate regulation mechanism of particle inertial focusing in an asymmetric ally curved microchannel. Acta Physica Sinica, 2015, 64(18): 184703. doi: 10.7498/aps.64.184703
    [4] Wang Xiao-Liang, Chen Shuo. Simulation of vapor-liquid coexistence using dissipative particle dynamics. Acta Physica Sinica, 2010, 59(10): 6778-6785. doi: 10.7498/aps.59.6778
    [5] Lin Chen-Sen, Chen Shuo, Li Qi-Liang, Yang Zhi-Gang. Accelerating dissipative particle dynamics with graphic processing unit. Acta Physica Sinica, 2014, 63(10): 104702. doi: 10.7498/aps.63.104702
    [6] Xu Shao-Feng, Lou Ying-Hou, Wu Yao-Feng, Wang Xiang-Yang, He Ping. Fluid slip over hydrophobic surfaces in microchannels: a dissipative particle dynamics study. Acta Physica Sinica, 2019, 68(10): 104701. doi: 10.7498/aps.68.20182002
    [7] Liu Mou-Bin, Chang Jian-Zhong. A new boundary treatment algorithm for dissipative particle dynamics. Acta Physica Sinica, 2010, 59(11): 7556-7563. doi: 10.7498/aps.59.7556
    [8] Lin Chen-Sen, Chen Shuo, Xiao Lan-Lan. New dissipative particle dynamics boundary condition for complex geometry. Acta Physica Sinica, 2019, 68(14): 140204. doi: 10.7498/aps.68.20190533
    [9] Liu Han-Tao, Liu Mou-Bin, Chang Jian-Zhong, Su Tie-Xiong. Dissipative particle dynamics simulation of multiphase flow through a mesoscopic channel. Acta Physica Sinica, 2013, 62(6): 064705. doi: 10.7498/aps.62.064705
    [10] Dai Qing, Xiang Nan, Cheng Jie, Ni Zhong-Hua. Viscoelastic focusing of microparticles in circular cross-sectional microchannels. Acta Physica Sinica, 2015, 64(15): 154703. doi: 10.7498/aps.64.154703
    [11] Numerical Simulation of Shear-thinning Droplet Impact on Surfaces with Different Wettability. Acta Physica Sinica, , (): . doi: 10.7498/aps.69.20191682
  • Citation:
Metrics
  • Abstract views:  685
  • PDF Downloads:  640
  • Cited By: 0
Publishing process
  • Received Date:  17 December 2012
  • Accepted Date:  08 March 2013
  • Published Online:  20 June 2013

Dissipative particle dynamics simulation of macromolecular solutions under Poiseuille flow in microchannels

  • 1. Department of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 50775202), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. J20081235), and the Natural Science Foundation of Zhejiang Province, China (Grant No. Z1100475).

Abstract: macromolecular solutions under Poiseuille flow in microchannels are investigated using the dissipative particle dynamics (DPD) approach. The results show that the macromolecular solutions are non-Newtonian fluids which can be described by power-law fluids, and the power-law index decreases with the increase of the macromolecular concentration. The DPD simulations show that the hydrodynamic interaction between the macromolecular chains and the wall, and the gradient of Brownian diffusivity of the chains govern the cross-stream migration of the macromolecules. However, the chain-wall hydrodynamic interaction may not be fully developed and are partly screened in conventional DPD approach. Hence, the chains migrate toward the wall during flow. Simulation results also indicate that the migration toward the wall increases with the increase of the driving force. The competition between the unscreened chain-wall hydrodynamic interaction and Brownian diffusivity leads to two symmetric off-center peaks and a local minimum in the channel centerline in the chain center-of-mass distribution. Under strong confinement, the chain-wall hydrodynamic interaction may be fully screened and the Brownian motion is weak, thus the chains weakly move toward the wall for channel of small width.

Reference (33)

Catalog

    /

    返回文章
    返回