Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical design and experiment study of sub-wavelength antireflective micropyramid structures on THz emitters

Hu Xiao-Kun Li Jiang Li Xian Chen Yun-Hui Li Yan-Feng Chai Lu Wang Qing-Yue

Theoretical design and experiment study of sub-wavelength antireflective micropyramid structures on THz emitters

Hu Xiao-Kun, Li Jiang, Li Xian, Chen Yun-Hui, Li Yan-Feng, Chai Lu, Wang Qing-Yue
PDF
Get Citation
  • Nonlinear crystals commonly used in optical rectification for the generation of terahertz (THz) radiation have high refractive indices in the THz frequency range, and thus Fresnel reflection at the crystal-air output surface causes a large part of the generated THz wave to be reflected back into the crystals. Here we report on the design and experimental study of sub-wavelength antireflective micropyramid structures on GaP crystals. Effective medium theory is used to demonstrate the enhancement of THz output by the antireflective micropyramid structures, and further to design the antireflective structures at different frequencies. Several micropyramid structures are fabricated on the output surface of GaP crystals by micromachining, and the correlation between the THz output enhancement and the structure parameters is verified. The agreement between theory and experiment shows that our methodology is applicable to other THz emitters based on optical rectification.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61077083, 61027013, 61078028, 60838004), the National Basic Research Program of China (Grant Nos. 2007CB310408, 2010CB327604, 2011CB808101), and NSFC-RFBR Program (Grant No. 61211120193).
    [1]

    Jacobsen R H, Mittleman D M, Nuss M C 1996 Opt. Lett. 21 2011

    [2]

    Shen Y C, Lo T, Taday P F, Cole B E, Tribe W R, Kemp M C 2005 Appl. Phys. Lett. 86 241116

    [3]

    Ikeda T, Matsushita A, Tatsuno M, Minami Y, Yamaguchi M, Yamamoto K, Tani M, Hangyo M 2005 Appl. Phys. Lett. 87 034105

    [4]

    Jeon T I, Grischkowsky D 1998 Appl. Phys. Lett. 72 3032

    [5]

    Markelz A G, Roitberg A, Heilweil E J 2000 Chem. Phys. Lett. 320 42

    [6]

    Yoneyama H, Yamashita M, Kasai S, Kawase K, Ito H, Ouchi T 2008 Opt. Commun. 281 1909

    [7]

    Chen D P, Xing C F, Zhang Z, Zhang C L 2012 Acta Phys. Sin. 61 024202 (in Chinese) [陈大鹏, 邢春飞, 张峥, 张存林 2012 物理学报 61 024202]

    [8]

    Li Z Y, Yao J Q, Xu D G, Zhong K, Wang J L, Bing P B 2011 Chin. Phys. B 20 054207

    [9]

    Federici J, Moeller L 2010 J. Appl. Phys. 107 111101

    [10]

    Hoffmann M C, Flöp J A 2011 J. Phys. D: Appl. Phys. 44 083001

    [11]

    Vodopyanov K L 2006 Opt. Express 14 2263

    [12]

    Zhang T Y, Cao J C 2004 Chin. Phys. 13 1742

    [13]

    Beck M, Schäfer H, Klatt G, Demsar J, Winnerl S, Helm M, Dekorsy T 2010 Opt. Express 18 9251

    [14]

    Blanchard F, Razzari L, Bandulet H C, Sharma G, Morandotti R, Kieffer J C, Ozaki T, Reid M, Tiedje H F, Haugen H K, Hegmann F A 2007 Opt. Express 15 13212

    [15]

    Stepanov A G, Bonacina L, Chekalin S V, Wolf J P 2008 Opt. Lett. 33 2497

    [16]

    Hebling J, Yeh K L, Hoffmann M C, Bartal B, Nelson K A 2008 J. Opt. Soc. Am. B 25 B6

    [17]

    Gatesman A J, Waldman J, Ji M, Musante C, Yngvesson S 2000 IEEE Microw. Guided Wave Lett. 10 264

    [18]

    Hosako I 2005 Appl. Opt. 44 3769

    [19]

    Southwell W H 1991 J. Opt. Soc. Am. A 8 549

    [20]

    Brckner C, Käsebier T, Pradarutti B, Riehemann S, Notni G, Kley E B, Tnnermann A 2009 Opt. Express 17 3063

    [21]

    Kuroo S I, Oyama S, Shiraishi K, Sasho H, Fukushima K 2010 Appl. Opt. 49 2806

    [22]

    Escoubas L, Simon J J, Loli M, Berginc G, Flory F, Giovannini H 2003 Opt. Commun. 226 81

    [23]

    Moharam M G, Gaylord T K 1981 J. Opt. Soc. Am. 71 811

    [24]

    Raguin D H, Morris G M 1993 Appl. Opt. 32 1154

    [25]

    Han P, Chen Y W, Zhang X C 2010 IEEE J. Sel. Top. Quantum Electron. 16 338

    [26]

    Saleh B E A, Teich M C 2007 Fundamentals of Photonics (2nd Ed.) (New Jersey: Wiley Interscience), p246-260

    [27]

    Fang F Z, Liu Y C 2004 J. Micromech. Microeng. 14 984

    [28]

    Wang C L, Tian Z, Xing Q R, Gu J Q, Liu F, Hu M L, Chai L, Wang Q Y 2010 Acta Phys. Sin. 59 7857 (in Chinese) [王昌雷, 田震, 邢岐荣, 谷建强, 刘丰, 胡明列, 柴路, 王清月 2010 物理学报 59 7857]

    [29]

    Liu F, Hu X K, Li Y F, Xing Q R, Hu M L, Chai L, Wang Q Y 2012 Acta Phys. Sin. 61 040703 (in Chinese) [刘丰, 胡晓堃, 栗岩锋, 邢岐荣, 胡明列, 柴路, 王清月 2012 物理学报 61 040703]

  • [1]

    Jacobsen R H, Mittleman D M, Nuss M C 1996 Opt. Lett. 21 2011

    [2]

    Shen Y C, Lo T, Taday P F, Cole B E, Tribe W R, Kemp M C 2005 Appl. Phys. Lett. 86 241116

    [3]

    Ikeda T, Matsushita A, Tatsuno M, Minami Y, Yamaguchi M, Yamamoto K, Tani M, Hangyo M 2005 Appl. Phys. Lett. 87 034105

    [4]

    Jeon T I, Grischkowsky D 1998 Appl. Phys. Lett. 72 3032

    [5]

    Markelz A G, Roitberg A, Heilweil E J 2000 Chem. Phys. Lett. 320 42

    [6]

    Yoneyama H, Yamashita M, Kasai S, Kawase K, Ito H, Ouchi T 2008 Opt. Commun. 281 1909

    [7]

    Chen D P, Xing C F, Zhang Z, Zhang C L 2012 Acta Phys. Sin. 61 024202 (in Chinese) [陈大鹏, 邢春飞, 张峥, 张存林 2012 物理学报 61 024202]

    [8]

    Li Z Y, Yao J Q, Xu D G, Zhong K, Wang J L, Bing P B 2011 Chin. Phys. B 20 054207

    [9]

    Federici J, Moeller L 2010 J. Appl. Phys. 107 111101

    [10]

    Hoffmann M C, Flöp J A 2011 J. Phys. D: Appl. Phys. 44 083001

    [11]

    Vodopyanov K L 2006 Opt. Express 14 2263

    [12]

    Zhang T Y, Cao J C 2004 Chin. Phys. 13 1742

    [13]

    Beck M, Schäfer H, Klatt G, Demsar J, Winnerl S, Helm M, Dekorsy T 2010 Opt. Express 18 9251

    [14]

    Blanchard F, Razzari L, Bandulet H C, Sharma G, Morandotti R, Kieffer J C, Ozaki T, Reid M, Tiedje H F, Haugen H K, Hegmann F A 2007 Opt. Express 15 13212

    [15]

    Stepanov A G, Bonacina L, Chekalin S V, Wolf J P 2008 Opt. Lett. 33 2497

    [16]

    Hebling J, Yeh K L, Hoffmann M C, Bartal B, Nelson K A 2008 J. Opt. Soc. Am. B 25 B6

    [17]

    Gatesman A J, Waldman J, Ji M, Musante C, Yngvesson S 2000 IEEE Microw. Guided Wave Lett. 10 264

    [18]

    Hosako I 2005 Appl. Opt. 44 3769

    [19]

    Southwell W H 1991 J. Opt. Soc. Am. A 8 549

    [20]

    Brckner C, Käsebier T, Pradarutti B, Riehemann S, Notni G, Kley E B, Tnnermann A 2009 Opt. Express 17 3063

    [21]

    Kuroo S I, Oyama S, Shiraishi K, Sasho H, Fukushima K 2010 Appl. Opt. 49 2806

    [22]

    Escoubas L, Simon J J, Loli M, Berginc G, Flory F, Giovannini H 2003 Opt. Commun. 226 81

    [23]

    Moharam M G, Gaylord T K 1981 J. Opt. Soc. Am. 71 811

    [24]

    Raguin D H, Morris G M 1993 Appl. Opt. 32 1154

    [25]

    Han P, Chen Y W, Zhang X C 2010 IEEE J. Sel. Top. Quantum Electron. 16 338

    [26]

    Saleh B E A, Teich M C 2007 Fundamentals of Photonics (2nd Ed.) (New Jersey: Wiley Interscience), p246-260

    [27]

    Fang F Z, Liu Y C 2004 J. Micromech. Microeng. 14 984

    [28]

    Wang C L, Tian Z, Xing Q R, Gu J Q, Liu F, Hu M L, Chai L, Wang Q Y 2010 Acta Phys. Sin. 59 7857 (in Chinese) [王昌雷, 田震, 邢岐荣, 谷建强, 刘丰, 胡明列, 柴路, 王清月 2010 物理学报 59 7857]

    [29]

    Liu F, Hu X K, Li Y F, Xing Q R, Hu M L, Chai L, Wang Q Y 2012 Acta Phys. Sin. 61 040703 (in Chinese) [刘丰, 胡晓堃, 栗岩锋, 邢岐荣, 胡明列, 柴路, 王清月 2012 物理学报 61 040703]

  • [1] Liu Rui, Gu Chun-Ming, He Li-Rong, Wu Sen, Shen Wen-Zhong, Ogawa Hiroshi, Guo Qi-Xin. Generation of terahertz radiation via optical rectification and electro-optic detection in ZnTe crystals. Acta Physica Sinica, 2004, 53(4): 1217-1222. doi: 10.7498/aps.53.1217
    [2] Zhang Kai-Chun, Liu Sheng-Gang. THz wave radiation in periodically poled lithium niobate during on optical rectification. Acta Physica Sinica, 2007, 56(9): 5258-5262. doi: 10.7498/aps.56.5258
    [3] Zhou Chang-Zhu, Wang Chen, Li Zhi-Yuan. Fabrication and spectra-measurement of high Q photonic crystal cavity on silicon slabs. Acta Physica Sinica, 2012, 61(1): 014214. doi: 10.7498/aps.61.014214
    [4] Deng Yu-Qiang, Xing Qi-Rong, Lang Li-Ying, Chai Lu, Wang Qing-Yue, Zhang Zhi-Gang. Wavelet-transform in terahertz time-domain spectroscopy. Acta Physica Sinica, 2005, 54(11): 5224-5227. doi: 10.7498/aps.54.5224
    [5] Chen He-Ming, Meng Qing. Design of high efficiency photonic crystal terahertz filter. Acta Physica Sinica, 2011, 60(1): 014202. doi: 10.7498/aps.60.014202
    [6] Yao Yao, Shen Yue, Hao Jia-Ming, Dai Ning. Antireflection coatings based on subwavelength artificial engineering microstructures. Acta Physica Sinica, 2019, 68(14): 147802. doi: 10.7498/aps.68.20190702
    [7] Xu Xing-Sheng, Sun Zeng-Hui, Du Wei, Lu Lin, Chen Hong-Da, Xiong Zhi-Gang, Jin Ai-Zi, Zhang Dao-Zhong. Optical properties of semiconductor quantum-well material using photonic crystal fabricated by micro-fabrication machine. Acta Physica Sinica, 2006, 55(3): 1248-1252. doi: 10.7498/aps.55.1248
    [8] Liu Yong-Shun, Wang Shu-Rong, Wu Yi-Hui, Zhang Ping, Zhuang Xu-Ye. Research on the fiber-optic evanescent field sensor based on microfabvication and the effect of fiber length on its properties. Acta Physica Sinica, 2009, 58(4): 2501-2506. doi: 10.7498/aps.58.2501
    [9] Li Shi-Xiong, Bai Zhong-Chen, Huang Zheng, Zhang Xin, Qin Shui-Jie, Mao Wen-Xue. Study on the machining mechanism of fabrication of micro channels in fused silica substrates by laser-induced plasma. Acta Physica Sinica, 2012, 61(11): 115201. doi: 10.7498/aps.61.115201
    [10] Hu Xing-Lei, Sun Ya-Zhou, Liang Ying-Chun, Chen Jia-Xuan. Performance evolution process of machined surface of monocrystalline silicon micro/nanostructures. Acta Physica Sinica, 2013, 62(22): 220704. doi: 10.7498/aps.62.220704
  • Citation:
Metrics
  • Abstract views:  707
  • PDF Downloads:  537
  • Cited By: 0
Publishing process
  • Received Date:  24 September 2012
  • Accepted Date:  01 November 2012
  • Published Online:  20 March 2013

Theoretical design and experiment study of sub-wavelength antireflective micropyramid structures on THz emitters

  • 1. Ultrafast Laser Laboratory, College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Optelectronic Information Technology (Ministry of Education), Tianjin University, Tianjin 300072, China;
  • 2. State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instrument and Optoelectronics Engineering, Centre of MicroNano Manufacturing Technology, Tianjin University, Tianjin 300072, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 61077083, 61027013, 61078028, 60838004), the National Basic Research Program of China (Grant Nos. 2007CB310408, 2010CB327604, 2011CB808101), and NSFC-RFBR Program (Grant No. 61211120193).

Abstract: Nonlinear crystals commonly used in optical rectification for the generation of terahertz (THz) radiation have high refractive indices in the THz frequency range, and thus Fresnel reflection at the crystal-air output surface causes a large part of the generated THz wave to be reflected back into the crystals. Here we report on the design and experimental study of sub-wavelength antireflective micropyramid structures on GaP crystals. Effective medium theory is used to demonstrate the enhancement of THz output by the antireflective micropyramid structures, and further to design the antireflective structures at different frequencies. Several micropyramid structures are fabricated on the output surface of GaP crystals by micromachining, and the correlation between the THz output enhancement and the structure parameters is verified. The agreement between theory and experiment shows that our methodology is applicable to other THz emitters based on optical rectification.

Reference (29)

Catalog

    /

    返回文章
    返回