Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The research of polarized information detection for photo-elastic modulator-based imaging spectropolarimeter

Chen You-Hua Wang Zhao-Ba Wang Zhi-Bin Zhang Rui Wang Yan-Chao Wang Guan-Jun

The research of polarized information detection for photo-elastic modulator-based imaging spectropolarimeter

Chen You-Hua, Wang Zhao-Ba, Wang Zhi-Bin, Zhang Rui, Wang Yan-Chao, Wang Guan-Jun
PDF
Get Citation
  • A new method of polarization modulation based triple-photoelastic-modulator (triple-PEM) is proposed as an key component of photo-elastic modulator-based imaging spectro-polarimeter (PEM-ISP) combined with acousto optic tunable filter. The basic principles of PEM-ISP and triple-PEM-based differential frequency polarization modulation are described, that is, the tandem PEMs are operated as an electro-optic circular retardance modulator in a high-performance reflective imaging system. Operating the PEMs at slightly different resonant frequencies generates a differential signal that modulates the polarized component of the incident light at a much lower heterodyne frequency. Then the basic equations for polarization measurement is derived by analyzing and calculating its Muller matrix. The simulation and experiments verify the feasibility and accuracy of polarization measurement by triple-PEM-based differential frequency polarization modulation. Finally, we analyze the influences of the setting of integral step and sampling interval of the detector polarization measurement, and a preliminary error analyses of field angle, phase retardation amplitude etc are also be carried out. The result shows that the measurement error of DoLP is less than 0.6% when the phase retardation error is 1%. This work provides the necessary theoretical basis for remote sensing of new PEM-ISP and for engineering implementation of Stokes parametric inversion.
    • Funds: Project supported by the Special Funds of the National Natural Science Foundation of China (Grant No. 61127015), the International S & T Cooperation Projects of China (Grant No. 2012DFA10680) and the International S & T Cooperation Projects of Shanxi Province, China (Grant No. 2010081038).
    [1]

    Joseph S T, Dennis L G, David B C, Joseph A S 2006 Appl. Opt. 45 5453

    [2]

    Zhu B H, Zhang C M, Jian X H, Zeng W F 2012 Acta Phys. Sin. 61 090701 (in Chinese) [祝宝辉, 张淳民, 简小华, 曾文锋 2012 物理学报 61 090701]

    [3]

    Wang X Q, Xiang L B, Huang M, Jing J J 2011 Spectrosc. Spect. Anal. 31 1968 (in Chinese) [王新全, 相里斌, 黄旻, 景娟娟 2011 光谱学与光谱分析 31 1968]

    [4]

    Frank C, Jong W, Klamer S 2002 Opt. Eng. 41 1021

    [5]

    Hasekamp O P, Landgraf J 2007 Appl. Opt. 46 3332

    [6]

    Ford K B, Michael R D 2001 Opt. Express 9 444

    [7]

    Kurosaki H 2007 Adv. Space Res. 39 185

    [8]

    Otto P H, Jochen L 2007 Appl. Opt. 46 3332

    [9]

    Jones H S, Iannarilli J F, Kehahian L P 2004 Opt. Express 12 6559

    [10]

    Scharmer G B, Narayan G, Hillberg T 2008 Astrophys. J. 689 I 69

    [11]

    Mahler A B 2010 Ph. D. Dissertation (Arizona: the University of Arizona)

    [12]

    Jian X H, Zhang C M, Zhu B H, Zhao B C, Du J 2008 Acta Phys. Sin. 57 7565 (in Chinese) [简小华, 张淳民, 祝宝辉, 赵葆常, 杜娟 2008 物理学报 57 7565]

    [13]

    Xie D H, Gu X F, Cheng T H, Yu T, Li Z Q, Chen X F, Chen H, Guo J 2012 Acta Phys. Sin. 61 077801 (in Chinese) [谢东海, 顾行发, 程天海, 余涛, 李正强, 陈兴峰, 陈好, 郭婧 2012 物理学报 61 077801]

    [14]

    Zhang C M, Ai J J, Ren W Y 2008 Chin. Phys. B 17 7565

    [15]

    Kemp J C 1969 J. Opt. Soc. Am. 59 950

    [16]

    Liu Y W, Jones G A, Peng Y, Shen T H 2006 J. Appl. Phys. 100 1

    [17]

    Guan W, Jones G A, Liu Y W, Shen T H 2008 Appl. Phys. 103 043104

    [18]

    Keller C U, Povel H, Stenflo J O 1994 Proc. SPIE 2265 222

    [19]

    Gandorfer A M, Povel H P, Steiner P 2004 Astron. Astrophys. 422 703

    [20]

    Ramelli R, Balemi S, Bianda M 2010 Proc. SPIE 773 5

    [21]

    Christian T, Schmid H M, Anthony B 2008 Proceedings of Ground-based and Airborne Instrumentation for Astronomy II Marseille, France June 23, 2008 7014 70143F

    [22]

    Diner D J, Davis A B, Hancock B 2007 Appl. Opt. 46 8428

    [23]

    Diner D J, Davis A B, Hancock B 2010 Appl. Opt. 49 2929

    [24]

    Candorfer A M, Povel H P 1997 Astron. Asirophys. 328 381

    [25]

    Stenflo O J 1984 Appl. Opt. 23 1267

    [26]

    Povel H 1995 Opt. Eng. 34 1870

    [27]

    Mahler A B, Chipman R 2011 Proc. SPIE 6676 667601

    [28]

    Kuldkepp M, Hawkes N C, Rachlew E 2005 Appl. Opt. 44 5899

    [29]

    Katrašnik J, Pernuš F, Likar B 2010 Appl. Spectroscopy 64 1265

    [30]

    Theocaris P S, Gdoutos E E 1979 Matrix Theory of Photo Elasticity (Vol.2) (Berlin: Springer-Verlag)

    [31]

    Wei G, Grenville A J, Liu Y W, Shen T H 2008 J. Appl. Phys. 103 043104

    [32]

    Wang B, List J 2005 Proc. SPIE 5888 436

    [33]

    Zhang C M, Liu N, Wu F Q 2010 Acta Phys. Sin. 59 949 (in Chinese) [张淳民, 刘宁, 吴福全 2010 物理学报 59 949]

    [34]

    Wu J F, Zhang C M 2010 Chin. Phys. B 19 034201

    [35]

    Kemp J C 2010 PEM-100 Photoelastic Modulator User Manual (Oregon: Hinds International, Inc.) p77

    [36]

    Kuhn J R, Potter D, Parise B 2001 Astrophys. J. 553 L189

  • [1]

    Joseph S T, Dennis L G, David B C, Joseph A S 2006 Appl. Opt. 45 5453

    [2]

    Zhu B H, Zhang C M, Jian X H, Zeng W F 2012 Acta Phys. Sin. 61 090701 (in Chinese) [祝宝辉, 张淳民, 简小华, 曾文锋 2012 物理学报 61 090701]

    [3]

    Wang X Q, Xiang L B, Huang M, Jing J J 2011 Spectrosc. Spect. Anal. 31 1968 (in Chinese) [王新全, 相里斌, 黄旻, 景娟娟 2011 光谱学与光谱分析 31 1968]

    [4]

    Frank C, Jong W, Klamer S 2002 Opt. Eng. 41 1021

    [5]

    Hasekamp O P, Landgraf J 2007 Appl. Opt. 46 3332

    [6]

    Ford K B, Michael R D 2001 Opt. Express 9 444

    [7]

    Kurosaki H 2007 Adv. Space Res. 39 185

    [8]

    Otto P H, Jochen L 2007 Appl. Opt. 46 3332

    [9]

    Jones H S, Iannarilli J F, Kehahian L P 2004 Opt. Express 12 6559

    [10]

    Scharmer G B, Narayan G, Hillberg T 2008 Astrophys. J. 689 I 69

    [11]

    Mahler A B 2010 Ph. D. Dissertation (Arizona: the University of Arizona)

    [12]

    Jian X H, Zhang C M, Zhu B H, Zhao B C, Du J 2008 Acta Phys. Sin. 57 7565 (in Chinese) [简小华, 张淳民, 祝宝辉, 赵葆常, 杜娟 2008 物理学报 57 7565]

    [13]

    Xie D H, Gu X F, Cheng T H, Yu T, Li Z Q, Chen X F, Chen H, Guo J 2012 Acta Phys. Sin. 61 077801 (in Chinese) [谢东海, 顾行发, 程天海, 余涛, 李正强, 陈兴峰, 陈好, 郭婧 2012 物理学报 61 077801]

    [14]

    Zhang C M, Ai J J, Ren W Y 2008 Chin. Phys. B 17 7565

    [15]

    Kemp J C 1969 J. Opt. Soc. Am. 59 950

    [16]

    Liu Y W, Jones G A, Peng Y, Shen T H 2006 J. Appl. Phys. 100 1

    [17]

    Guan W, Jones G A, Liu Y W, Shen T H 2008 Appl. Phys. 103 043104

    [18]

    Keller C U, Povel H, Stenflo J O 1994 Proc. SPIE 2265 222

    [19]

    Gandorfer A M, Povel H P, Steiner P 2004 Astron. Astrophys. 422 703

    [20]

    Ramelli R, Balemi S, Bianda M 2010 Proc. SPIE 773 5

    [21]

    Christian T, Schmid H M, Anthony B 2008 Proceedings of Ground-based and Airborne Instrumentation for Astronomy II Marseille, France June 23, 2008 7014 70143F

    [22]

    Diner D J, Davis A B, Hancock B 2007 Appl. Opt. 46 8428

    [23]

    Diner D J, Davis A B, Hancock B 2010 Appl. Opt. 49 2929

    [24]

    Candorfer A M, Povel H P 1997 Astron. Asirophys. 328 381

    [25]

    Stenflo O J 1984 Appl. Opt. 23 1267

    [26]

    Povel H 1995 Opt. Eng. 34 1870

    [27]

    Mahler A B, Chipman R 2011 Proc. SPIE 6676 667601

    [28]

    Kuldkepp M, Hawkes N C, Rachlew E 2005 Appl. Opt. 44 5899

    [29]

    Katrašnik J, Pernuš F, Likar B 2010 Appl. Spectroscopy 64 1265

    [30]

    Theocaris P S, Gdoutos E E 1979 Matrix Theory of Photo Elasticity (Vol.2) (Berlin: Springer-Verlag)

    [31]

    Wei G, Grenville A J, Liu Y W, Shen T H 2008 J. Appl. Phys. 103 043104

    [32]

    Wang B, List J 2005 Proc. SPIE 5888 436

    [33]

    Zhang C M, Liu N, Wu F Q 2010 Acta Phys. Sin. 59 949 (in Chinese) [张淳民, 刘宁, 吴福全 2010 物理学报 59 949]

    [34]

    Wu J F, Zhang C M 2010 Chin. Phys. B 19 034201

    [35]

    Kemp J C 2010 PEM-100 Photoelastic Modulator User Manual (Oregon: Hinds International, Inc.) p77

    [36]

    Kuhn J R, Potter D, Parise B 2001 Astrophys. J. 553 L189

  • [1] Zhong Kai, Yao Jian-Quan, Xu De-Gang, Zhang Hui-Yun, Wang Peng. Theoretical research on cascaded difference frequency generation of terahertz radiation. Acta Physica Sinica, 2011, 60(3): 034210. doi: 10.7498/aps.60.034210
    [2] Chai Lu, Niu Yue, Li Yan-Feng, Hu Ming-Lie, Wang Qing-Yue. Recent progress of tunable terahertz sources based on difference frequency generation. Acta Physica Sinica, 2016, 65(7): 070702. doi: 10.7498/aps.65.070702
    [3] Sun Bo, Yao Jian-Quan, Wang Zhuo, Wang Peng. Study of tunable terahertz-wave generation via difference frequency mixing in isotropic semiconductor crystals. Acta Physica Sinica, 2007, 56(3): 1390-1396. doi: 10.7498/aps.56.1390
    [4] Xu De-Gang, Yao Jian-Quan, Liu Huan. Theoretical study of tunable terahertz radiation based on difference-frequency generation in GaSe and ZnGeP2 crystals. Acta Physica Sinica, 2008, 57(9): 5662-5669. doi: 10.7498/aps.57.5662
    [5] Wang Peng, Zhao Huan, Wang Zhao-Hua, Li De-Hua, Wei Zhi-Yi. Active synchronization of two independent femtosecond and picosecond lasers and sum frequency generation of two laser pulses. Acta Physica Sinica, 2006, 55(8): 4161-4165. doi: 10.7498/aps.55.4161
    [6] Zhao Bao-Chang, Yan Xin-Ge, Zhang Chun-Min. Research on the mode of obtaining interferograms based on the temporally and spatially mixed modulated polarization interference imaging spectrometer. Acta Physica Sinica, 2010, 59(5): 3123-3129. doi: 10.7498/aps.59.3123
    [7] Jian Xiao-Hua, Zhang Chun-Min, Zhu Bao-Hui, Ren Wen-Yi. The data processing method of the temporarily and spatially mixed modulated polarization interference imaging spectrometer. Acta Physica Sinica, 2010, 59(9): 6131-6137. doi: 10.7498/aps.59.6131
    [8] Zhu Bao-Hui, Zhang Chun-Min, Jian Xiao-Hua, Zeng Wen-Feng. The reasearch of spatiotemporally mixed modulated polarization interference imaging spectrometer. Acta Physica Sinica, 2012, 61(9): 090701. doi: 10.7498/aps.61.090701
    [9] Mu Ting-Kui, Zhang Chun-Min, Li Qi-Wei, Wei Yu-Tong, Chen Qing-Ying, Jia Chen-Ling. The polarization-difference interference imaging spectrometer-I. concept, principle, and operation. Acta Physica Sinica, 2014, 63(11): 110704. doi: 10.7498/aps.63.110704
    [10] Mu Ting-Kui, Zhang Chun-Min, Li Qi-Wei, Wei Yu-Tong, Chen Qing-Ying, Jia Chen-Ling. The polarization-difference interference imaging spectrometer-Ⅱ. optical design and analysis. Acta Physica Sinica, 2014, 63(11): 110705. doi: 10.7498/aps.63.110705
  • Citation:
Metrics
  • Abstract views:  805
  • PDF Downloads:  568
  • Cited By: 0
Publishing process
  • Received Date:  12 September 2012
  • Accepted Date:  13 November 2012
  • Published Online:  20 March 2013

The research of polarized information detection for photo-elastic modulator-based imaging spectropolarimeter

  • 1. Key Laboratory of Instrumentation Science and Dynamic Measurement, North University of China, Taiyuan 030051, China;
  • 2. School of Information and Communication Engineering, North University of China, Taiyuan 030051, China;
  • 3. Engineering Technology Research Center of Shanxi Province for Opto-Electronic Information and Instrument, North University of China, Taiyuan 030051, China
Fund Project:  Project supported by the Special Funds of the National Natural Science Foundation of China (Grant No. 61127015), the International S & T Cooperation Projects of China (Grant No. 2012DFA10680) and the International S & T Cooperation Projects of Shanxi Province, China (Grant No. 2010081038).

Abstract: A new method of polarization modulation based triple-photoelastic-modulator (triple-PEM) is proposed as an key component of photo-elastic modulator-based imaging spectro-polarimeter (PEM-ISP) combined with acousto optic tunable filter. The basic principles of PEM-ISP and triple-PEM-based differential frequency polarization modulation are described, that is, the tandem PEMs are operated as an electro-optic circular retardance modulator in a high-performance reflective imaging system. Operating the PEMs at slightly different resonant frequencies generates a differential signal that modulates the polarized component of the incident light at a much lower heterodyne frequency. Then the basic equations for polarization measurement is derived by analyzing and calculating its Muller matrix. The simulation and experiments verify the feasibility and accuracy of polarization measurement by triple-PEM-based differential frequency polarization modulation. Finally, we analyze the influences of the setting of integral step and sampling interval of the detector polarization measurement, and a preliminary error analyses of field angle, phase retardation amplitude etc are also be carried out. The result shows that the measurement error of DoLP is less than 0.6% when the phase retardation error is 1%. This work provides the necessary theoretical basis for remote sensing of new PEM-ISP and for engineering implementation of Stokes parametric inversion.

Reference (36)

Catalog

    /

    返回文章
    返回