Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Molecular dynamics simulation on mechanical properties of gold nanotubes

Su Jin-Fang Song Hai-Yang An Min-Rong

Molecular dynamics simulation on mechanical properties of gold nanotubes

Su Jin-Fang, Song Hai-Yang, An Min-Rong
PDF
Get Citation
  • The tensile and compressive mechanical properties of gold nanotubes in different crystal orientations as well as the tensile mechanical properties of the same thinkness of gold nanotubes at different radius. are investigated using the molecular dynamics simulation method. In the simulation, we select embedded atom method as the interatomic potential function. The result shows that mechanical properties in the tensile and compressive process in different crystallographic orientations are dramatically different from each other, where the yield strength of the direction is the highest and the yield strength and the Young's modulus in the direction are less than in the and crystal orientation. The yield strength has no major changes when the radius is less than 3.0 nm, but it obviously decreases with the increase of the radius when the radius is larger than 3.0 nm.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 10902083), the Program for New Century Excellent Talents in University, China (Grant No. NCET-12-1046), and the New Scientific and Technological Star of Shaanxi Province, China (Grant No. 2012KJXX-39).
    [1]

    Liu Y L, Gui L J, Jin S 2012 Chin. Phys. B 21 096102

    [2]

    Zhou G R, Teng X Y, Wang Y, Geng H R, Hur B Y 2012 Acta Phys. Sin. 61 066101 (in Chinese) [周国荣, 滕新营, 王艳, 耿浩然, 许甫宁 2012 物理学报 61 066101]

    [3]

    Lu L, Chen X, Huang X, Lu K 2009 Science 323 607

    [4]

    McFadden S X, Mishra R S, Valiev R Z, Zhilyaev A P, Mukherjee A K 1999 Nature 398 684

    [5]

    Zhang X, Wang H, Scattergood R O, Narayan J, Koch C C, Sergueeva A V, Mukherjee A K 2002 Appl. Phys. Lett. 81 823

    [6]

    Wang Y M, Chen M W, Zhou F H, Ma E 2002 Nature 419 912

    [7]

    Jia M, Lai Y Q, Tian Z L, Liu Y X 2009 Acta Phys. Sin. 58 1139 (in Chinese) [贾明, 赖延清, 田忠良, 刘业翔 2009 物理学报 58 1139]

    [8]

    Wang J M, Hu W Y, Li X F, Xiao S F, Deng H Q 2010 Comput. Mater. Sci. 50 373

    [9]

    He A M, Shao J L, Wang P, Qin C S 2010 Acta Phys. Sin. 59 8836 (in Chinese) [何安民, 邵建立, 王裴, 秦承森 2010物理学报 59 8836]

    [10]

    Wang G H, Pan H, Ke F J, Xia M F, Bai Y L 2008 Chin. Phys. B 17 259

    [11]

    Huang D, Zhang Q, Qiao P Z 2011 Comput. Mater. Sci. 50 903

    [12]

    Wang Z G, Wu L, Zhang Y, Wen Y H 2011 Acta Phys. Sin. 60 096105 (in Chinese) [汪志刚, 吴亮, 张杨, 文玉华2011 物理学报 60 096105]

    [13]

    Pastor-Abia L, Caturla M J, SanFabian E, Chiappe G, Louis E 2011 Phys. Rev. B 83 165441

    [14]

    An M R, Song H Y, Su J F 2012 Chin. Phys. B 21 106202

    [15]

    Song H Y, Li Y L 2012 Acta Phys. Sin. 61 226201 (in Chinese) [宋海洋, 李玉龙 2012 物理学报 61 226201]

    [16]

    Song H Y, Li Y L 2012 J. Appl. Phys. 112 054322

    [17]

    Ao B Y, Xia J X, Chen P H, Hu W Y, Wang X L 2012 Chin. Phys. B 21 026103

    [18]

    Liu Y H, Gao Y J, Wang F Y, Zhu T M, Zhao J W 2011 Acta Phys. Chim. Sin. 27 1341 (in Chinese) [刘云红, 高亚军, 王奋英, 朱铁民, 赵健伟 2011 物理化学学报 27 1341]

    [19]

    Gleiter H 1995 Nanostruct. Mater. 6 3

    [20]

    Qin Kun, Yang L M, Hu S S 2008 Chin. Phys. Lett. 25 2581

    [21]

    Deng C, Sansoz F 2010 Phys. Rev. B 81 155430

    [22]

    Siegel R W 1996 Mater. Sci. Forum. 235-238 851

    [23]

    Sanders P G, Youngdahl C J, Weertman J R 1997 Mater. Sci. Eng. A 234-236 77

    [24]

    Koch C C, Malow T R 1999 Mater. Sci. Forum. 312-314 565

    [25]

    Honeycutt R W 1970 Methods Comput. Phys. 9 136

    [26]

    Li R, Hu Y Z, Wang H, Zhang Y J 2008 Chin. Phys. B 17 4253

    [27]

    Song H Y, Zha X W 2009 J. Phys. D: Appl. Phys. 42 225402

    [28]

    Song H Y, Zha X W 2009 Phys. Lett. A 373 682

    [29]

    Yang G M, Xu G L, Li Y T, Xu F, Chang Y B, Yang Y H 2010 Mater. Rev. 24 81 (in Chinese) [杨光明, 徐国良, 李月婷, 徐凤, 常艳兵, 杨云慧2010材料导报 24 81]

    [30]

    Yang J H, Li B, Zhang Q J, Chen L 2012 Phys. Lett. A 376 2707

    [31]

    Zhang J, Wang C Y, Chowdhury R, Adhikari S 2012 Appl. Phys. Lett. 101 093109

    [32]

    Stukowski A 2010 Modelling Simul. Mater. Sci. Eng. 18 015012

    [33]

    Faken D, Jonsson H 1994 Comput. Mater. Sci. 2 279

    [34]

    Coura P Z, Legoas S B, Moreira A S, Sato F, Rodrigues V, Dantas S O, Ugarte D, Galvao D S 2004 Nano Lett. 4 1187

    [35]

    Horstermeyer M F, Baskes M I 1999 J. Eng. Mater. Technol. 121 114

  • [1]

    Liu Y L, Gui L J, Jin S 2012 Chin. Phys. B 21 096102

    [2]

    Zhou G R, Teng X Y, Wang Y, Geng H R, Hur B Y 2012 Acta Phys. Sin. 61 066101 (in Chinese) [周国荣, 滕新营, 王艳, 耿浩然, 许甫宁 2012 物理学报 61 066101]

    [3]

    Lu L, Chen X, Huang X, Lu K 2009 Science 323 607

    [4]

    McFadden S X, Mishra R S, Valiev R Z, Zhilyaev A P, Mukherjee A K 1999 Nature 398 684

    [5]

    Zhang X, Wang H, Scattergood R O, Narayan J, Koch C C, Sergueeva A V, Mukherjee A K 2002 Appl. Phys. Lett. 81 823

    [6]

    Wang Y M, Chen M W, Zhou F H, Ma E 2002 Nature 419 912

    [7]

    Jia M, Lai Y Q, Tian Z L, Liu Y X 2009 Acta Phys. Sin. 58 1139 (in Chinese) [贾明, 赖延清, 田忠良, 刘业翔 2009 物理学报 58 1139]

    [8]

    Wang J M, Hu W Y, Li X F, Xiao S F, Deng H Q 2010 Comput. Mater. Sci. 50 373

    [9]

    He A M, Shao J L, Wang P, Qin C S 2010 Acta Phys. Sin. 59 8836 (in Chinese) [何安民, 邵建立, 王裴, 秦承森 2010物理学报 59 8836]

    [10]

    Wang G H, Pan H, Ke F J, Xia M F, Bai Y L 2008 Chin. Phys. B 17 259

    [11]

    Huang D, Zhang Q, Qiao P Z 2011 Comput. Mater. Sci. 50 903

    [12]

    Wang Z G, Wu L, Zhang Y, Wen Y H 2011 Acta Phys. Sin. 60 096105 (in Chinese) [汪志刚, 吴亮, 张杨, 文玉华2011 物理学报 60 096105]

    [13]

    Pastor-Abia L, Caturla M J, SanFabian E, Chiappe G, Louis E 2011 Phys. Rev. B 83 165441

    [14]

    An M R, Song H Y, Su J F 2012 Chin. Phys. B 21 106202

    [15]

    Song H Y, Li Y L 2012 Acta Phys. Sin. 61 226201 (in Chinese) [宋海洋, 李玉龙 2012 物理学报 61 226201]

    [16]

    Song H Y, Li Y L 2012 J. Appl. Phys. 112 054322

    [17]

    Ao B Y, Xia J X, Chen P H, Hu W Y, Wang X L 2012 Chin. Phys. B 21 026103

    [18]

    Liu Y H, Gao Y J, Wang F Y, Zhu T M, Zhao J W 2011 Acta Phys. Chim. Sin. 27 1341 (in Chinese) [刘云红, 高亚军, 王奋英, 朱铁民, 赵健伟 2011 物理化学学报 27 1341]

    [19]

    Gleiter H 1995 Nanostruct. Mater. 6 3

    [20]

    Qin Kun, Yang L M, Hu S S 2008 Chin. Phys. Lett. 25 2581

    [21]

    Deng C, Sansoz F 2010 Phys. Rev. B 81 155430

    [22]

    Siegel R W 1996 Mater. Sci. Forum. 235-238 851

    [23]

    Sanders P G, Youngdahl C J, Weertman J R 1997 Mater. Sci. Eng. A 234-236 77

    [24]

    Koch C C, Malow T R 1999 Mater. Sci. Forum. 312-314 565

    [25]

    Honeycutt R W 1970 Methods Comput. Phys. 9 136

    [26]

    Li R, Hu Y Z, Wang H, Zhang Y J 2008 Chin. Phys. B 17 4253

    [27]

    Song H Y, Zha X W 2009 J. Phys. D: Appl. Phys. 42 225402

    [28]

    Song H Y, Zha X W 2009 Phys. Lett. A 373 682

    [29]

    Yang G M, Xu G L, Li Y T, Xu F, Chang Y B, Yang Y H 2010 Mater. Rev. 24 81 (in Chinese) [杨光明, 徐国良, 李月婷, 徐凤, 常艳兵, 杨云慧2010材料导报 24 81]

    [30]

    Yang J H, Li B, Zhang Q J, Chen L 2012 Phys. Lett. A 376 2707

    [31]

    Zhang J, Wang C Y, Chowdhury R, Adhikari S 2012 Appl. Phys. Lett. 101 093109

    [32]

    Stukowski A 2010 Modelling Simul. Mater. Sci. Eng. 18 015012

    [33]

    Faken D, Jonsson H 1994 Comput. Mater. Sci. 2 279

    [34]

    Coura P Z, Legoas S B, Moreira A S, Sato F, Rodrigues V, Dantas S O, Ugarte D, Galvao D S 2004 Nano Lett. 4 1187

    [35]

    Horstermeyer M F, Baskes M I 1999 J. Eng. Mater. Technol. 121 114

  • [1] Fan Qian, Xu Jian-Gang, Song Hai-Yang, Zhang Yun-Guang. Effects of layer thickness and strain rate on mechanical properties of copper-gold multilayer nanowires. Acta Physica Sinica, 2015, 64(1): 016201. doi: 10.7498/aps.64.016201
    [2] Li Jie-Jie, Lu Bin-Bin, Xian Yue-Hui, Hu Guo-Ming, Xia Re. Characterization of nanoporous silver mechanical properties by molecular dynamics simulation. Acta Physica Sinica, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [3] Wei Lun, Mei Fang-Hua, Shao Nan, Dong Yun-Shan, Li Ge-Yang. The coherent growth and mechanical properties of non-isostructural TiN/TiB2 nanomultilayers. Acta Physica Sinica, 2005, 54(10): 4846-4851. doi: 10.7498/aps.54.4846
    [4] Luo Qing-Hong, Lu Yong-Hao, Lou Yan-Zhi. Microstructure and mechanical properties of Ti-B-C-N nanocomposite coatings. Acta Physica Sinica, 2011, 60(8): 086802. doi: 10.7498/aps.60.086802
    [5] Yang Duo, Zhong Ning, Shang Hai-Long, Sun Shi-Yang, Li Ge-Yang. Microstructures and mechanical properties of (Ti, N)/Al nanocomposite films by magnetron sputtering. Acta Physica Sinica, 2013, 62(3): 036801. doi: 10.7498/aps.62.036801
    [6] Wang Li-Qun, Wang Ming-Xia, Li De-Jun, Yang Jin, Yu Da-Shu, Su Jie. Effect of N2 partial pressure on the defect properties and mechanical behaviors of nanoscale ZrN/WN multilayers. Acta Physica Sinica, 2007, 56(6): 3435-3439. doi: 10.7498/aps.56.3435
    [7] Li Li-Li, Zhang Xiao-Hong, Wang Yu-Long, Guo Jia-Hui, Zhang Shuang. Simulation of mechanical properties based on microstructure in polyethylene/montmorillonite nanocomposites. Acta Physica Sinica, 2016, 65(19): 196202. doi: 10.7498/aps.65.196202
    [8] Wang Chen, Song Hai-Yang, An Min-Rong. Molecular dynamics simulation of effect of tilt angle on mechanical property of magnesium bicrystals. Acta Physica Sinica, 2014, 63(4): 046201. doi: 10.7498/aps.63.046201
    [9] Ma Guo-Jia, Zhang Hua-Fang, Wu Hong-Chen, Peng Li-Ping, Jiang Yan-Li, Liu Xi-Liang. Influences of acetylene gas flow rate on mechanical properties and chemical structure of nanocomposite TiC diamond-like carbon films. Acta Physica Sinica, 2007, 56(4): 2377-2381. doi: 10.7498/aps.56.2377
    [10] Xie Fang, Zhang Lin, Zhu Ya-Bo, Zhang Zhao-Hui. Molecular dynamics simulation of multi-wall carbon nanotube oscillators. Acta Physica Sinica, 2008, 57(9): 5833-5837. doi: 10.7498/aps.57.5833
  • Citation:
Metrics
  • Abstract views:  980
  • PDF Downloads:  879
  • Cited By: 0
Publishing process
  • Received Date:  26 September 2012
  • Accepted Date:  31 October 2012
  • Published Online:  20 March 2013

Molecular dynamics simulation on mechanical properties of gold nanotubes

  • 1. School of Science, Xi’an University of Posts and Telecommunications, Xi’an 710061, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 10902083), the Program for New Century Excellent Talents in University, China (Grant No. NCET-12-1046), and the New Scientific and Technological Star of Shaanxi Province, China (Grant No. 2012KJXX-39).

Abstract: The tensile and compressive mechanical properties of gold nanotubes in different crystal orientations as well as the tensile mechanical properties of the same thinkness of gold nanotubes at different radius. are investigated using the molecular dynamics simulation method. In the simulation, we select embedded atom method as the interatomic potential function. The result shows that mechanical properties in the tensile and compressive process in different crystallographic orientations are dramatically different from each other, where the yield strength of the direction is the highest and the yield strength and the Young's modulus in the direction are less than in the and crystal orientation. The yield strength has no major changes when the radius is less than 3.0 nm, but it obviously decreases with the increase of the radius when the radius is larger than 3.0 nm.

Reference (35)

Catalog

    /

    返回文章
    返回