Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study on the piezoelectric properties of hydrogen modified graphene nanoribbons

Liu Yuan Yao Jie Chen Chi Miao Ling Jiang Jian-Jun

First-principles study on the piezoelectric properties of hydrogen modified graphene nanoribbons

Liu Yuan, Yao Jie, Chen Chi, Miao Ling, Jiang Jian-Jun
PDF
Get Citation
  • This paper focuses on the piezoelectric properties of zigzag graphene nanoribbons with hydrogen selective modifications by first-principles calculations. The structures of hydrogen modified graphene nanoribbons are optimized and the calculated hydrogen binding energies indicate that these structures are very stable. Owing to the hydrogen atom selective adsorption, the adjacent carbon atoms have different charge states and breaking inversion symmetries of nonpiezoelectric graphene. So, the positive charge centers and the negative charge centers of the hexatomic carbon ring in these structures separate from each other under uniaxial tensile strain, inducing the macroscopical electric polarization. Furthermore, the gradient of strain induced dipole moment density is related to ribbon width, i.e., the wider the ribbon, the better the piezoelectric property is. Besides, the dipole moment density of hydrogen selective modified graphene nanoribbons without strain could be controlled by changing the edge modification configuration of hydrogen atoms effectually.
    [1]

    Brown C S, Taylor R, Thomas L A 1962 Proc. IEEE B 43 193

    [2]

    Philippot E, Goiffon A, Ibanez A 1994 J. Solid State Chem. 110 356

    [3]

    King-Smith R D, Vanderbilt D 1993 Phys. Rev. B 47 1651

    [4]

    Xin J, Zheng Y Q, Shi E W 2007 Appl. Phys. Lett. 91 112902

    [5]

    Majdoub M S, Sharma P, Cagin T 2008 Phys. Rev. B 77 125424

    [6]

    Kholkin A, Amdursky N, Bdikin I, Gazit E, Rosenman G 2010 ACS Nano. 4 610

    [7]

    Qi Y, Kim J, Nguyen T D, Lisko B, Purohit P K, McAlpine M C 2011 Nano Lett. 11 1331

    [8]

    Agrawal R, Espinosa H D 2011 Nano Lett. 11 786

    [9]

    Qi J S, Qian X, Qi L, Feng J, Shi D, Li J 2012 Nano Lett. 12 1224

    [10]

    Morozov S V, Novoselov K S, Schedin F, Jiang D, Firsov A A, Geim A K 2005 Phys. Rev. B 72 201401

    [11]

    Garcia-Sanchez D, van der Zande A M, Paulo A S, Lassagne B, McEuen P L, Bachtold A 2008 Nano Lett. 8 1399

    [12]

    Hu H X, Zhang Z H, Liu X H, Qiu M, Ding K H 2009 Acta Phys. Sin. 58 7165 (in Chinese) [胡海鑫, 张振华, 刘新海, 邱明, 丁开和 2009 物理学报 58 7165]

    [13]

    Santos J E, Peres N M R, dos Santos J, Neto A H C 2011 Phys. Rev. B 84 085430

    [14]

    Wu J B, Qian Y, Guo X J, Cui X H, Miao L, Jiang J J 2012 Acta Phys. Sin. 61 073601 (in Chinese) [吴江滨, 钱耀, 郭小杰, 崔先慧, 缪灵, 江建军 2012 物理学报 61 073601]

    [15]

    Miwa R H, Schmidt T M, Scopel W L, Fazzio A 2011 Appl. Phys. Lett. 99 163108

    [16]

    Kang Y J, Kang J, Chan K J 2008 Phys. Rev. B 78 115404

    [17]

    Yan J Y, Zhang P, Sun B, Lu H Z, Wang Z G, Duan S Q, Zhao X G 2009 Phys. Rev. B 79 115403

    [18]

    Lusk M T, Carr L D 2008 Phys. Rev. Lett. 100 175503

    [19]

    Wang Z Y, Hu H F, Gu L, Wang W, Jia J F 2011 Acta Phys. Sin. 60 017102 (in Chinese) [王志勇, 胡慧芳, 顾林, 王巍, 贾金凤 2011 物理学报 60 017102]

    [20]

    Denis P A 2010 Chem. Phys. Lett. 492 251

    [21]

    Akturk O U, Tomak M 2010 Appl. Phys. Lett. 96 081914

    [22]

    Lin Q, Chen Y X, Wu J B, Kong Z M 2011 Acta Phys. Sin. 60 097103 (in Chinese) [林琦, 陈余行, 吴建宝, 孔宗敏 2011 物理学报 60 097103]

    [23]

    Elias D C, Nair R R, Mohiuddin T M G 2009 Science 323 610

    [24]

    Balog R, Jorgensen B, Nilsson L, Andersen M, Rienks E 2010 Nat. Mater. 9 315

    [25]

    Subrahmanyam K S, Kumar P, Maitra U, Govindaraj A, Hembram K P P S, Waghmare U V, Rao C N R 2011 Proc. Natl. Acad. Sci. 108 2674

    [26]

    Hohenberg P, Kohn W 1964 Phys. Rev. B 136 864

    [27]

    Kohn W, Sham L J 1965 Phys. Rev. A 140 1133

    [28]

    Portal D S, Ordejón P, Artacho E, Soler J M 1997 J. Quantum. Chem. 65 453

    [29]

    Kohn W, Sham L J 1965 Phys. Rev. A 137 1697

    [30]

    Perdew J P, Zunger A 1981 Phys. Rev. B 23 5048

    [31]

    Pauling L 1932 J. Am. Chem. Soc. 54 3570

    [32]

    Allred A L 1961 J. Inorg. Nucl. Chem. 17 215

  • [1]

    Brown C S, Taylor R, Thomas L A 1962 Proc. IEEE B 43 193

    [2]

    Philippot E, Goiffon A, Ibanez A 1994 J. Solid State Chem. 110 356

    [3]

    King-Smith R D, Vanderbilt D 1993 Phys. Rev. B 47 1651

    [4]

    Xin J, Zheng Y Q, Shi E W 2007 Appl. Phys. Lett. 91 112902

    [5]

    Majdoub M S, Sharma P, Cagin T 2008 Phys. Rev. B 77 125424

    [6]

    Kholkin A, Amdursky N, Bdikin I, Gazit E, Rosenman G 2010 ACS Nano. 4 610

    [7]

    Qi Y, Kim J, Nguyen T D, Lisko B, Purohit P K, McAlpine M C 2011 Nano Lett. 11 1331

    [8]

    Agrawal R, Espinosa H D 2011 Nano Lett. 11 786

    [9]

    Qi J S, Qian X, Qi L, Feng J, Shi D, Li J 2012 Nano Lett. 12 1224

    [10]

    Morozov S V, Novoselov K S, Schedin F, Jiang D, Firsov A A, Geim A K 2005 Phys. Rev. B 72 201401

    [11]

    Garcia-Sanchez D, van der Zande A M, Paulo A S, Lassagne B, McEuen P L, Bachtold A 2008 Nano Lett. 8 1399

    [12]

    Hu H X, Zhang Z H, Liu X H, Qiu M, Ding K H 2009 Acta Phys. Sin. 58 7165 (in Chinese) [胡海鑫, 张振华, 刘新海, 邱明, 丁开和 2009 物理学报 58 7165]

    [13]

    Santos J E, Peres N M R, dos Santos J, Neto A H C 2011 Phys. Rev. B 84 085430

    [14]

    Wu J B, Qian Y, Guo X J, Cui X H, Miao L, Jiang J J 2012 Acta Phys. Sin. 61 073601 (in Chinese) [吴江滨, 钱耀, 郭小杰, 崔先慧, 缪灵, 江建军 2012 物理学报 61 073601]

    [15]

    Miwa R H, Schmidt T M, Scopel W L, Fazzio A 2011 Appl. Phys. Lett. 99 163108

    [16]

    Kang Y J, Kang J, Chan K J 2008 Phys. Rev. B 78 115404

    [17]

    Yan J Y, Zhang P, Sun B, Lu H Z, Wang Z G, Duan S Q, Zhao X G 2009 Phys. Rev. B 79 115403

    [18]

    Lusk M T, Carr L D 2008 Phys. Rev. Lett. 100 175503

    [19]

    Wang Z Y, Hu H F, Gu L, Wang W, Jia J F 2011 Acta Phys. Sin. 60 017102 (in Chinese) [王志勇, 胡慧芳, 顾林, 王巍, 贾金凤 2011 物理学报 60 017102]

    [20]

    Denis P A 2010 Chem. Phys. Lett. 492 251

    [21]

    Akturk O U, Tomak M 2010 Appl. Phys. Lett. 96 081914

    [22]

    Lin Q, Chen Y X, Wu J B, Kong Z M 2011 Acta Phys. Sin. 60 097103 (in Chinese) [林琦, 陈余行, 吴建宝, 孔宗敏 2011 物理学报 60 097103]

    [23]

    Elias D C, Nair R R, Mohiuddin T M G 2009 Science 323 610

    [24]

    Balog R, Jorgensen B, Nilsson L, Andersen M, Rienks E 2010 Nat. Mater. 9 315

    [25]

    Subrahmanyam K S, Kumar P, Maitra U, Govindaraj A, Hembram K P P S, Waghmare U V, Rao C N R 2011 Proc. Natl. Acad. Sci. 108 2674

    [26]

    Hohenberg P, Kohn W 1964 Phys. Rev. B 136 864

    [27]

    Kohn W, Sham L J 1965 Phys. Rev. A 140 1133

    [28]

    Portal D S, Ordejón P, Artacho E, Soler J M 1997 J. Quantum. Chem. 65 453

    [29]

    Kohn W, Sham L J 1965 Phys. Rev. A 137 1697

    [30]

    Perdew J P, Zunger A 1981 Phys. Rev. B 23 5048

    [31]

    Pauling L 1932 J. Am. Chem. Soc. 54 3570

    [32]

    Allred A L 1961 J. Inorg. Nucl. Chem. 17 215

  • [1] Zuo Min, Liao Wen-Hu, Wu Dan, Lin Li-E. Electron transport properties of isomeric quinoline molecule junction sandwiched between graphene nanoribbon electrodes. Acta Physica Sinica, 2019, 68(23): 237302. doi: 10.7498/aps.68.20191154
    [2] Zeng Yong-Chang, Tian Wen, Zhang Zhen-Hua. Electronic properties of graphene nanoribbons with periodical nanoholes passivated by oxygen. Acta Physica Sinica, 2013, 62(23): 236102. doi: 10.7498/aps.62.236102
    [3] Lin Qi, Chen Yu-Hang, Wu Jian-Bao, Kong Zong-Min. Effect of N-doping on band structure and transport property of zigzag graphene nanoribbons. Acta Physica Sinica, 2011, 60(9): 097103. doi: 10.7498/aps.60.097103
    [4] Liang Jin-Tao, Yan Xiao-Hong, Zhang Ying, Xiao Yang. Non-collinear magnetism and electronic transport of boron or nitrogen doped zigzag graphene nanoribbon. Acta Physica Sinica, 2019, 68(2): 027101. doi: 10.7498/aps.68.20181754
    [5] Ma Li, Tan Zhen-Bing, Tan Chang-Ling, Liu Guang-Tong, Yang Chang-Li, Lü Li. Fabrication of graphene nanoribbons through mechanical cleavage and their electronic transport properties at low temperature. Acta Physica Sinica, 2011, 60(10): 107302. doi: 10.7498/aps.60.107302
    [6] Zhang Hua-Lin, Sun Lin, Wang Ding. Electromagnetic properties of zigzag graphene nanoribbons with single-row line defect. Acta Physica Sinica, 2016, 65(1): 016101. doi: 10.7498/aps.65.016101
    [7] Liu Feng-Bin, Chen Wen-Bin, Cui Yan, Qu Min, Cao Lei-Gang, Yang Yue. A first principles study on the active adsorbates on the hydrogenated diamond surface. Acta Physica Sinica, 2016, 65(23): 236802. doi: 10.7498/aps.65.236802
    [8] Qin Jun-Rui, Chen Shu-Ming, Zhang Chao, Chen Jian-Jun, Liang Bin, Liu Bi-Wei. First-principles study of adsorption effect of A-Z-A graphene nanoribbons field effect transistor. Acta Physica Sinica, 2012, 61(2): 023102. doi: 10.7498/aps.61.023102
    [9] Zhang Hua-Lin, Sun Lin, Han Jia-Ning. Magneto-electronic properties of zigzag graphene nanoribbons doped with triangular boron nitride segment. Acta Physica Sinica, 2017, 66(24): 246101. doi: 10.7498/aps.66.246101
    [10] Xie Zhi, Cheng Wen-Dan. First-principles study of electronic structure and optical properties of TiO2 nanotubes. Acta Physica Sinica, 2014, 63(24): 243102. doi: 10.7498/aps.63.243102
  • Citation:
Metrics
  • Abstract views:  799
  • PDF Downloads:  1554
  • Cited By: 0
Publishing process
  • Received Date:  22 August 2012
  • Accepted Date:  08 November 2012
  • Published Online:  20 March 2013

First-principles study on the piezoelectric properties of hydrogen modified graphene nanoribbons

  • 1. School of Optical and Electronic Information of Huazhong University of Science and Technology, Wuhan 430074, China

Abstract: This paper focuses on the piezoelectric properties of zigzag graphene nanoribbons with hydrogen selective modifications by first-principles calculations. The structures of hydrogen modified graphene nanoribbons are optimized and the calculated hydrogen binding energies indicate that these structures are very stable. Owing to the hydrogen atom selective adsorption, the adjacent carbon atoms have different charge states and breaking inversion symmetries of nonpiezoelectric graphene. So, the positive charge centers and the negative charge centers of the hexatomic carbon ring in these structures separate from each other under uniaxial tensile strain, inducing the macroscopical electric polarization. Furthermore, the gradient of strain induced dipole moment density is related to ribbon width, i.e., the wider the ribbon, the better the piezoelectric property is. Besides, the dipole moment density of hydrogen selective modified graphene nanoribbons without strain could be controlled by changing the edge modification configuration of hydrogen atoms effectually.

Reference (32)

Catalog

    /

    返回文章
    返回