Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cognitive physics-based method for image edge representation and extraction with uncertainty

Wu Tao Jin Yi-Fu Hou Rui Yang Jun-Jie

Cognitive physics-based method for image edge representation and extraction with uncertainty

Wu Tao, Jin Yi-Fu, Hou Rui, Yang Jun-Jie
PDF
Get Citation
  • Image edge detection is an important tool of image processing, in which edge representation and extraction with uncertainty is one of key issues. Based on the physics-like methods for image edge representation and extraction, a novel cognitive physics-based method with uncertainty is proposed. The method uses data field to discover the global information from the image and then to map it from grayscale space to the appropriate potential space. From the point of view of the field theory, the method establishes an extensible theoretical framework and unifies the existing physics-like methods. On the other hand, the method defines the ascending half-cloud to construct the internal relationship between the range of cloud uncertainty degree and the edge representation and extraction. Finally, the method achieves image edge representation and extraction with uncertainty using the cognitive physics. The time complexity of the proposed algorithm is approximately linear in the size of the original image. It is indicated by the quantitative and qualitative experiments that the proposed method yields accurate and robust result, and is reasonable and effective.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2012CB719903) and the Foundation for Distinguished Young Talents in Higher Education of Guangdong Province, China (Grant No. 2012LYM-0092).
    [1]

    Wu Y Q, Zhang J K 2010 Acta Phys. Sin. 59 5487 (in Chinese) [吴一全, 张金矿 2010 物理学报 59 5487]

    [2]

    Ma J F, Hou K, Bao S L, Chen C 2011 Chin. Phys. B 20 028701

    [3]

    Tang Y G, Di Q Y, Zhao L X, Guan X P, Liu F C 2009 Acta Phys. Sin. 58 9 (in Chinese) [唐英干, 邸秋艳, 赵立兴, 关新平, 刘福才 2009 物理学报 58 9]

    [4]

    Song F J, Jutamulia S, Song J L, Yao S Y, Wang D 2003 Acta Phys. Sin. 52 3055 (in Chinese) [宋菲君, 赵文杰, Jutamulia S, 宋建力, 姚思一, 王栋 2003 物理学报 52 3055]

    [5]

    He S H, Yang S Q, Shi A G, Li T W 2009 Acta Phys. Sin. 58 794 (in Chinese) [何四华, 杨绍清, 石爱国, 李天伟 2009 物理学报 58 794]

    [6]

    Dong J T, Xu Y, Zong X P 2006 Acta Phys. Sin. 55 3223 (in Chinese) [董江涛, 徐艳, 宗晓萍 2006 物理学报 55 3223]

    [7]

    Chen D P, Xing C F, Zhang Z, Zhang C L 2012 Acta Phys. Sin. 61 024202 (in Chinese) [陈大鹏, 刑春飞, 张峥, 张存林 2012 物理学报 61 024202]

    [8]

    Direkoglu C, Dahyot R, Manzke M 2012 Int. J. Comput. Vision 100 170

    [9]

    Sun G Y, Liu Q H, Liu Q, Ji C Y, Li X W 2007 Pattern Recogn. 40 2766

    [10]

    Lopez-Molina C, Bustince H, Fernandez J, Couto P, De Baets B 2010 Pattern Recogn. 43 3730

    [11]

    Lopez-Molina C, Bustince H, Galar M, Fernandez J, De Baets B 2009 Ninth International Conference on Intelligent Systems Design and Applications Pisa, Italy November 30-December 2, 2009 p1347

    [12]

    Wang Z R, Quan Y M 2007 International Symposium on Intelligent Signal Processing and Communication Systems Xiamen, China November 28 - December 1, 2007 p260

    [13]

    Bouda B, Masmoudib L, Aboutajdine D 2008 Signal Process. 88 905

    [14]

    Wu T, Gao Y 2011 ICIC Express Lett. 5 733

    [15]

    Nixon M, Liu X U, Direkoglu C, Hurley D 2011 Comput. J. 54 11

    [16]

    Direkoglu C, Nixon M, Liu X U, Hurley D 2011 Pattern Recogn. Lett. 32 270

    [17]

    Boskovitz V, Guterman H 2002 IEEE T. Fuzzy Syst. 2 247

    [18]

    Pal S K, King R A 1983 IEEE T. Pattern Anal. 1 69

    [19]

    Bezdek J, Chandrasekhar R, Attikouzel Y 1998 IEEE T. Fuzzy Syst. 1 52

    [20]

    Lopez-Molina C, De Baets B, Bustince H 2011 Comput. Vis. Image Und. 11 1571

    [21]

    Li D Y, Liu C Y, Gan W Y 2009 Int. J. Intell. Syst. 24 357

    [22]

    Gan W Y, Li D Y, Wang J M 2006 Acta Electron. Sin. 34 258 (in Chinese) [淦文燕, 李德毅, 王建民 2006 电子学报 34 258]

    [23]

    Li D Y, Du Y 2005 Artificial Intelligence with Uncertainty (Beijing: National Defence Industry Press) p187 (in Chinese) [李德毅, 杜鹢 2005 不确定性人工智能 (北京: 国防工业出版社) 第187页]

    [24]

    Qin K, Xu K, Liu F L, Li D Y 2011 Comput. Math. Appl. 62 2824

    [25]

    Wu T, Qin K 2012 Neurocomputing 97 278

    [26]

    Liu Y, Li D Y, Zhang G W 2009 Acta Electron. Sin. 37 1651 (in Chinese) [刘禹, 李德毅, 张光卫 2009 电子学报 37 1651]

    [27]

    Rosin P L 2001 Pattern Recogn. 34 2083

    [28]

    Wu T, Qin K 2012 Opt. Lasers Eng. 50 131

    [29]

    Baddeley A J 1992 Robust Computer Vision: Quality of Vision Algorithms (Karlsruhe: Wichmann Verlag) p152

  • [1]

    Wu Y Q, Zhang J K 2010 Acta Phys. Sin. 59 5487 (in Chinese) [吴一全, 张金矿 2010 物理学报 59 5487]

    [2]

    Ma J F, Hou K, Bao S L, Chen C 2011 Chin. Phys. B 20 028701

    [3]

    Tang Y G, Di Q Y, Zhao L X, Guan X P, Liu F C 2009 Acta Phys. Sin. 58 9 (in Chinese) [唐英干, 邸秋艳, 赵立兴, 关新平, 刘福才 2009 物理学报 58 9]

    [4]

    Song F J, Jutamulia S, Song J L, Yao S Y, Wang D 2003 Acta Phys. Sin. 52 3055 (in Chinese) [宋菲君, 赵文杰, Jutamulia S, 宋建力, 姚思一, 王栋 2003 物理学报 52 3055]

    [5]

    He S H, Yang S Q, Shi A G, Li T W 2009 Acta Phys. Sin. 58 794 (in Chinese) [何四华, 杨绍清, 石爱国, 李天伟 2009 物理学报 58 794]

    [6]

    Dong J T, Xu Y, Zong X P 2006 Acta Phys. Sin. 55 3223 (in Chinese) [董江涛, 徐艳, 宗晓萍 2006 物理学报 55 3223]

    [7]

    Chen D P, Xing C F, Zhang Z, Zhang C L 2012 Acta Phys. Sin. 61 024202 (in Chinese) [陈大鹏, 刑春飞, 张峥, 张存林 2012 物理学报 61 024202]

    [8]

    Direkoglu C, Dahyot R, Manzke M 2012 Int. J. Comput. Vision 100 170

    [9]

    Sun G Y, Liu Q H, Liu Q, Ji C Y, Li X W 2007 Pattern Recogn. 40 2766

    [10]

    Lopez-Molina C, Bustince H, Fernandez J, Couto P, De Baets B 2010 Pattern Recogn. 43 3730

    [11]

    Lopez-Molina C, Bustince H, Galar M, Fernandez J, De Baets B 2009 Ninth International Conference on Intelligent Systems Design and Applications Pisa, Italy November 30-December 2, 2009 p1347

    [12]

    Wang Z R, Quan Y M 2007 International Symposium on Intelligent Signal Processing and Communication Systems Xiamen, China November 28 - December 1, 2007 p260

    [13]

    Bouda B, Masmoudib L, Aboutajdine D 2008 Signal Process. 88 905

    [14]

    Wu T, Gao Y 2011 ICIC Express Lett. 5 733

    [15]

    Nixon M, Liu X U, Direkoglu C, Hurley D 2011 Comput. J. 54 11

    [16]

    Direkoglu C, Nixon M, Liu X U, Hurley D 2011 Pattern Recogn. Lett. 32 270

    [17]

    Boskovitz V, Guterman H 2002 IEEE T. Fuzzy Syst. 2 247

    [18]

    Pal S K, King R A 1983 IEEE T. Pattern Anal. 1 69

    [19]

    Bezdek J, Chandrasekhar R, Attikouzel Y 1998 IEEE T. Fuzzy Syst. 1 52

    [20]

    Lopez-Molina C, De Baets B, Bustince H 2011 Comput. Vis. Image Und. 11 1571

    [21]

    Li D Y, Liu C Y, Gan W Y 2009 Int. J. Intell. Syst. 24 357

    [22]

    Gan W Y, Li D Y, Wang J M 2006 Acta Electron. Sin. 34 258 (in Chinese) [淦文燕, 李德毅, 王建民 2006 电子学报 34 258]

    [23]

    Li D Y, Du Y 2005 Artificial Intelligence with Uncertainty (Beijing: National Defence Industry Press) p187 (in Chinese) [李德毅, 杜鹢 2005 不确定性人工智能 (北京: 国防工业出版社) 第187页]

    [24]

    Qin K, Xu K, Liu F L, Li D Y 2011 Comput. Math. Appl. 62 2824

    [25]

    Wu T, Qin K 2012 Neurocomputing 97 278

    [26]

    Liu Y, Li D Y, Zhang G W 2009 Acta Electron. Sin. 37 1651 (in Chinese) [刘禹, 李德毅, 张光卫 2009 电子学报 37 1651]

    [27]

    Rosin P L 2001 Pattern Recogn. 34 2083

    [28]

    Wu T, Qin K 2012 Opt. Lasers Eng. 50 131

    [29]

    Baddeley A J 1992 Robust Computer Vision: Quality of Vision Algorithms (Karlsruhe: Wichmann Verlag) p152

  • [1] Xiao Di, Xie Yi-Jun. A joint compression and encryption scheme for color JPEG image. Acta Physica Sinica, 2013, 62(24): 240508. doi: 10.7498/aps.62.240508
    [2] Tang Ying-Gan, Di Qiu-Yan, Zhao Li-Xing, Guan Xin-Ping, Liu Fu-Cai. Image thresholding segmentation based on two-dimensional minimum Tsallis-cross entropy. Acta Physica Sinica, 2009, 58(1): 9-15. doi: 10.7498/aps.58.9
    [3] Song Chang-Xin, Ma Ke, Qin Chuan, Xiao Peng. Infrared image segmentation based on clustering combined with sparse coding and spatial constraints. Acta Physica Sinica, 2013, 62(4): 040702. doi: 10.7498/aps.62.040702
    [4] Zong Xiao-Ping, Xu Yan, Dong Jiang-Tao. Fuzzy edge detection technique using multi-information fusion algorithm. Acta Physica Sinica, 2006, 55(7): 3223-3228. doi: 10.7498/aps.55.3223
    [5] Ma Zhen-He, Dou Shi-Dan, Ma Yu-Shu, Liu Jian, Zhao Yu-Qian, Liu Jiang-Hong, Lü Jiang-Tao, Wang Yi. Measurement of wall strain in embryonic chick heart by spectral domain optical coherence tomography. Acta Physica Sinica, 2016, 65(23): 235202. doi: 10.7498/aps.65.235202
    [6] Qiao Zhi-Wei. The total variation constrained data divergence minimization model for image reconstruction and its Chambolle-Pock solving algorithm. Acta Physica Sinica, 2018, 67(19): 198701. doi: 10.7498/aps.67.20180839
    [7] Liang Yan-Mei, Zhai Hong-Chen, Chang Sheng-Jiang, Zhang Si-Yuan. Color image segmentation based on the principle of maximum degree of membership. Acta Physica Sinica, 2003, 52(11): 2655-2659. doi: 10.7498/aps.52.2655
    [8] Dong Wen-Jie, Feng Guo-Ling, Gong Zhi-Qiang, Li Jian-Ping. Abrupt climate change detection based on heuristic segmentation algorithm. Acta Physica Sinica, 2005, 54(11): 5494-5499. doi: 10.7498/aps.54.5494
    [9] Cao Bing-Hua, Fan Meng-Bao, Yang Xue-Feng. Analytical time-domain model of transient eddy current field in pulsed eddy current testing. Acta Physica Sinica, 2010, 59(11): 7570-7574. doi: 10.7498/aps.59.7570
    [10] Wu Yi-Quan, Zhang Jin-Kuang. Image thresholding based on θ-division of 2-D histogram and maximum Shannon entropy. Acta Physica Sinica, 2010, 59(8): 5487-5495. doi: 10.7498/aps.59.5487
  • Citation:
Metrics
  • Abstract views:  701
  • PDF Downloads:  485
  • Cited By: 0
Publishing process
  • Received Date:  10 September 2012
  • Accepted Date:  29 October 2012
  • Published Online:  20 March 2013

Cognitive physics-based method for image edge representation and extraction with uncertainty

  • 1. School of Information Science and Technology, Zhanjiang Normal University, Zhanjiang 524048, China
Fund Project:  Project supported by the National Basic Research Program of China (Grant No. 2012CB719903) and the Foundation for Distinguished Young Talents in Higher Education of Guangdong Province, China (Grant No. 2012LYM-0092).

Abstract: Image edge detection is an important tool of image processing, in which edge representation and extraction with uncertainty is one of key issues. Based on the physics-like methods for image edge representation and extraction, a novel cognitive physics-based method with uncertainty is proposed. The method uses data field to discover the global information from the image and then to map it from grayscale space to the appropriate potential space. From the point of view of the field theory, the method establishes an extensible theoretical framework and unifies the existing physics-like methods. On the other hand, the method defines the ascending half-cloud to construct the internal relationship between the range of cloud uncertainty degree and the edge representation and extraction. Finally, the method achieves image edge representation and extraction with uncertainty using the cognitive physics. The time complexity of the proposed algorithm is approximately linear in the size of the original image. It is indicated by the quantitative and qualitative experiments that the proposed method yields accurate and robust result, and is reasonable and effective.

Reference (29)

Catalog

    /

    返回文章
    返回